Eating Crow – Safe Water Temperatures for Scuba Regulators

CrowScientists and engineers love to argue, and unlike the case with politicians, compromise is not an option. Technologists speak for nature, for the truth of a universe which does not speak for itself. But when a technologist is wrong, they usually have to eat some crow, so to speak.

Stephen Hawkings, the famous cosmologist, freely admits his brilliant doctoral dissertation was wrong. Crow was eaten, and Hawkings moved on to a better, arguably more correct view of the universe.

Now, on a much less grand scale, this is my time for eating crow.

There has been quiet disagreement over the water temperature above which a scuba regulator is safe from free-flowing or icing up. Those untoward icing events either give the diver too much gas, or not enough. Neither event is good.

Based upon an apocryphal Canadian government study that I can’t seem to put my hands on anymore (government studies are rarely openly available), it has long been believed by the Canadians and Americans that in water temperatures of 38°F or above, regulator icing problems are unlikely. That temperature was selected because when testing older, low flow Canadian regulators, temperatures inside the regulator rarely dropped below 32°F when water temperature was 38°F.

Regulator ice
U.S. Navy photo.

As shown in an earlier blog post, in 42°F water and at high scuba bottle pressures (2500 psi) in instrumented second stage regulators (Sherwood Maximus) second stage internal temperature dropped below zero Celsius (32°F) during inspiration. During exhalation the temperature rose much higher, and the average measured temperature was above freezing. Nevertheless, that regulator free flowed at 40 minutes due to ice accumulation.

Presumably, a completely “safe” water temperature would have to be warmer than 42°F. But how much warmer?

My European colleagues have stated for a while that cold water regulator problems were possible at any temperature below 10°C, or 50°F. However, as far as I can tell that assertion was not based on experimental data. So as we began to search for the dividing line between safe and unsafe water temperatures in another brand of regulator, I assumed we’d find a safe temperature cooler than 50°F. For that analysis, we used a generic Brand X regulator.

To make a long story short, I was wrong.

To understand our analysis, you must first realize that scuba regulator freeze-up is a probabilistic event.  It cannot be predicted with certainty. Risk factors for an icing event are diving depth, scuba bottle pressure, ventilation (flow) rate, regulator design, and time. In engineering terms, mass and heat transfer flow rates, time and chance determine the outcome of a dive in cold water.

At NEDU, a regulator is tested at maximum anticipated depth and ventilated at a high flow rate (62.5 L/min) for a total period of 30 min. If the regulator free flows or stops flowing, an event is recorded and the time of the event is noted. Admittedly, the NEDU test is extremely rigorous, but it’s been used to select safe regulators for U.S. military use for years.

Tests were conducted at 38, 42, 45 and 50°F.

Next, an ordinal ranking of the performance for each regulator configuration and temperature combination was possible using an NEDU-defined probability-of-failure test statistic (Pf). This test statistic combines the number of tests of a specific configuration and temperature conducted and the elapsed time before freezing events occurred. Ordinal ranks were calculated using equation 1, Eqnwhere n is the number of dives conducted, E is a binary event defined as 0 if there is no freezing event and 1 if a freezing event occurs, t is the elapsed time to the freezing event from the start of the test (minutes), and k is an empirically determined constant equal to 0.3 and determined to provide reasonable probabilities, i is the index of summation.

Conshelf XIV pic 2
Click for a larger image.

Each data point in the graph to the left represents the average result from 5 regulators, with each test of 30-min or more duration. For conditions where no freezing events were observed at 30 min, additional dives were made for a 60-min duration.

As depicted, 40-regulator tests were completed, using 20 tests of the five primary second stages and 20 octopus or “secondary” second stages. Regression lines were computed for each data set. Interestingly, those lines proved to be parallel.

file0001735338997
A second stage of a typical scuba regulator. The bite block is in the diver’s mouth.

The “octopus” second stage regulator (the part going in a scuba diver’s mouth) differed from the primary only by the spring tension holding the regulator’s poppet valve shut. More negative mouth pressure is required to pull the valve open to get air than in the primary regulator.

The test statistic does not provide the probability that a given test article or regulator configuration will experience a freezing event at a given temperature. However, it does provide the ability to rank the freezing event performance of regulator configurations at various temperatures.

Our testing reveals that in spite of my predictions to the contrary, for the Brand X regulator our best estimate of a “safe” water temperature, defined as Pf = 0, is roughly 53°F for the standard or “primary” second stage regulator and 49° F for the octopus or secondary regulator.

For all practical purposes, the European convention of 50°F (10°C) is close enough.

Eating crow is not so bad. Some think it tastes a little like chicken.

Separator smallEquation 1 came from J.R. Clarke and M. Rainone, Evaluation of Sherwood Scuba Regulators for use in Cold Water, NEDU Technical Report 9-95, July 1995.

Diving a Rebreather in Frigid Water: Canister Concerns

Picture1

As evidenced by Under the Pole diving expeditions, rebreathers are being used in some of the most isolated and frigid places in the world. Some of those dive missions are surprisingly deep (111 meters, 330 feet) and long, about 2 hours.

That gives me cause for pause.

I suspect most divers are aware of the 1/3 rule for gas consumption on an open circuit (scuba) cave dive. You should use no more than 1/3 of your air supply on the way in, leaving you with 1/3 for the trip out, and 1/3 of your gas supply available in reserve. Sadly, even that amount of reserve has not saved all cave divers.

Now that cave divers are using rebreathers, the rules, at least for some, have changed. Some savvy rebreather cave divers use the rule of doubles: Always have twice as much oxygen, twice as much diluent, and twice as much canister as you think you’ll need. That plus an open-circuit or semi-closed circuit bailout should keep you safe — in theory.

Gas supply is easy to measure throughout a dive; there is a pressure gauge for all gases. But what about canister duration? Most divers assume they will have more canister duration available than gas supply; which means they don’t need to worry about canister duration. That would be a good thing, if it were true. After all, how many manufacturers provide expected canister durations for various work rates and water temperatures? Maybe, none? Or certainly very few.

I would be very surprised if manufacturers could say with certainty that during a two hour dive in -2°C (28°F) water, at depths to 111 meters that the scrubber can provide double the duration needed. That would be four hours in -2°C water, at all potential diver work rates.

Some of you may say, “Under-the-ice-diving is not like cave diving, so the doubles rule is too conservative.” I invite you to think again. Under polar ice, is there ready access to the surface? Not unless you’re diving directly under the through-ice bore hole the entire time.

In the U.S. Navy experience, obtaining useful data on canister durations from manufacturers is difficult. Duration data as a function of temperature is practically nonexistent. Therefore I will share the following information gleamed from scrubber canister testing in extreme environments by the Navy. While this blogger cannot reveal canister durations for military rebreathers, the information on the coefficient of varation (COV) is not protected. (There is no way to figure out what a canister duration is based solely on the COV.)

The following 4-minute video gives a good introduction to the coefficient of variation.

https://youtu.be/XXngxFm_d5c://

All rebreather divers should know that canister performance declines in an accelerating manner as water temperature drops between 50°F and 28°F. But what your rebreather manufacturer may not know is that the innate variability of canister durations also increases as water temperature drops. The Navy has found that trend in all types of rebreathers.

So, while canister durations drop considerably in cold water, you’re also less certain about what your canister’s endurance is going to be, because of the increase in duration variability. When canister duration drops and variability increases, a diver’s margin of safety becomes a gamble. Personally, I don’t like to gamble under water.

Picture0001
Coefficient of variation (COV, mean duration divided by the standard deviation) of a typical rebreather. Each data point is the mean of five canisters (n=5).

In the U.S. Navy, published canister durations take into account mean canister performance, and variability. That is accomplished through the use of 95% prediction intervals. The greater the variability in canister duration, the lower the published duration.

This method of determining safe canister durations has been in use by the U.S. Navy since 1999. However, I do not know if manufacturers use similar statistically-based methods for publishing canister durations. If they or you do not take duration variability into account as you dive cold, you may be in for a shock. Due to the nature of statistics, you may have 9 deep, cold dives with no CO2 problems, but find yourself in bad shape on the 10th dive.

If you did have a CO2 problem, it wouldn’t necessarily be anyone’s fault: it could just be a result of canister variability in action.

So, diver beware. Give yourself plenty of leeway in planning rebreather dives in frigid waters. After all, you do not want to become a statistic, caused ironically by statistics.

Separator small

If you have an interest in understanding the derivation of the prediction interval equation and its application, two videos of lectures by Dr. Simcha Pollack from St. John’s University may be helpful. Part I is found here, and Part 2 is found here.

Thanks to Gene Hobbs and the Rubicon Foundation, NEDU’s original report on the use of prediction limits to establish published canister durations is found here.

Authorized for Cold Water Service: What Divers Should Know About Extreme Cold

The following is reprinted from my article published in ECO Magazine, March 2015.  It was published in its current format as an ECO Editorial Focus by TSC Media. Thank-you Mr. Greg Leatherman for making it available for reprinting.ECO Magazine

It is the highpoint of your career as an environmentally minded marine biologist. The National Science Foundation has provided a generous grant for your photographic mission to the waters 100 ft below the Ross Ice Shelf, Antarctica. Now you’re on an important mission, searching for biological markers of climate change.

Picture1
Under Antarctic Ice, photo by Dr. Martin Sayer.

Above you lies nothing but a seemingly endless ceiling of impenetrable ice, 10 ft thick. Having spent the last several minutes concentrating on your photography, you look up and notice you’ve strayed further from safety than you’d wanted. The strobe light marking the hole drilled in the ice where you’ll exit the freezing water is a long swim away. And, unfortunately, your fellow scientist “buddy” diver has slipped off somewhere behind you, intent on her own research needs.

You’re diving SCUBA with two independent SCUBA regulators, but in the frigid cold of the literally icy waters, you know that ice could be accumulating within the regulator in your mouth. At the same time, a small tornado of sub-zero air expands chaotically within the high-pressure regulator attached to the single SCUBA bottle on your back—and that icy torrent is increasingly sucking the safety margins right out of your regulator. You are powerless to realize this danger or to do anything about it.

At any moment, your regulator could suddenly and unexpectedly free flow, tumultuously dumping the precious and highly limited supply of gas contained in the aluminum pressure cylinder on your back. You’re equipped and trained in the emergency procedure of shutting off the offending regulator and switching to your backup regulator, but this could also fail. It’s happened before. 

As you try to determine your buddy’s position, you’re feeling very lonely. You realize the high point of your career could rapidly become the low point of your career—and an end to your very being. Picture046

The preceding is not merely a writer’s dramatization. It is real, and the situation could prove deadly—as it has in far less interesting and auspicious locations. Regulator free flow and limited gas supplies famously claimed three professional divers’ lives in one location within a span of one month.

There is a risk to diving in extreme environments. However, the U.S. Navy has found that the risk is poorly understood, even by themselves—the professionals. If you check the Internet SCUBA boards, you constantly come across divers asking for opinions about cold-watersafe regulators. Undoubtedly, recent fatalities have made amateur divers a little nervous—and for good reason.

Internet bulletin boards are not the place to get accurate information about life support safety in frigid water. Unfortunately, the Navy found that manufacturers are also an unreliable source. Of course, the manufacturers want to be fully informed and to protect their customers, but the fact remains that manufacturers test to a European cold-water standard, EN 250. By passing those tests, manufacturers receive a “CE” stamp that is pressed into the hard metal of the regulator. That stamp means the regulator has received European approval for coldwater service.

As a number of manufacturers have expensively learned, passing the EN 250 testing standard is not the same as passing the more rigorous U.S. Navy standard, which was recently revised, making it even more rigorous by using higher gas supply pressures and testing in fresh as well as salt water. Freshwater diving in the Navy is rare—but depending on the brand and model of regulator in use, it can prove lethal.

The unadorned truth is that the large majority of manufacturers do not know how to make a consistently good Performing cold-water regulator. Perhaps the reason is because the type of equipment required to test to the U.S. Navy standard is very expensive and has, not to date, been legislated. Simply, it is not a requirement.

Some manufacturers are their own worst enemy; they cannot resist tinkering with even their most successful and rugged products. This writer is speculating here, but the constant manufacturing changes appear to be driven by either market pressures (bringing out something “new” to the trade show floor) or due to manufacturing economy (i.e., cost savings). The situation is so bad that even regulators that once passed U.S. Navy scrutiny are in some cases being changed almost as soon as they reach the “Authorized for Military Use” list. The military is struggling to keep up with the constant flux in the market place, which puts the civilian diver in a very difficult position. How can they—or you—know what gear to take on an environmentally extreme dive?

My advice to my family, almost all of whom are divers, is to watch what the Navy is putting on their authorized for cold-water service list. The regulators that show up on that list (and they are small in number) have passed the most rigorous testing in the world.

Through hundreds of hours of testing, in the most extreme conditions possible, the Navy has learned what all SCUBA divers should know:

• Even the coldest water (28°F; -2°C) is warm compared to the temperature of expanding air coming from a first stage regulator to the diver. There is a law of physics that says when compressed air contained in a SCUBA bottle is expanded by reducing it to a lower pressure, air temperature drops considerably. It’s the thermal consequence of adiabatic (rapid) expansion.

• Gas expansion does not have to be adiabatic. Isothermal (no temperature change) expansion is a process where the expansion is slow enough and heat entry into the gas from an outside source is fast enough that the expanded gas temperature does not drop.

• The best regulators are designed to take advantage of the heat available in ice water. The most critical place for that to happen is in the first stage where the greatest pressure drop occurs (from say 3,000 psi or higher to 135 psi above ambient water pressure (i.e., depth). They do that by maximizing heat transfer into the internals of the regulator.

• First stage regulators fail in two ways. The most common is that the first stage (which controls the largest pressure drop) begins to lose control of the pressure being supplied to the second stage regulator, the part that goes into a diver’s mouth. As that pressure climbs, the second stage eventually can’t hold it back any longer and a free flow ensues.

• The second failure mode is rare, but extremely problematic. Gas flow may stop suddenly and completely, so that backup regulator had better be handy.

• Second stage regulators are the most likely SCUBA components to fail in cold water due to internal ice accumulation.

• Free flows may start with a trickle, slowly accelerating to a torrent, or the regulator may instantly and unexpectedly erupt like a geyser of air. Once the uncontrolled, and often unstoppable free flow starts, it is self-perpetuating and can dump an entire cylinder of air within a few minutes through the second stage regulator.

• A warm-water regulator free flow is typically breathable; getting the air you need to ascend or to correct the problem is not difficult. In a cold-water-induced free flow, the geyser may be so cold as to make you feel like you’re breathing liquid nitrogen and so forceful as to be a safety concern. Staying relaxed under those conditions is difficult, but necessary.

• Water in non-polar regions can easily range between and 34°F to 38°F; at those temperatures, gas entering the second stage regulator can be at sub-freezing temperatures. European standard organizations classify ~10°C (50°F) as the cold/non-cold boundary. The Navy has found in the modern, high-flow regulators tested to date that 42°F is the water temperature where second stage inlet temperature is unlikely to dip below freezing.

• The small heat exchangers most manufacturers place just upstream of the second stage is ineffective In extreme conditions. They quickly ice over, insulating that portion of the regulator from the relative warmth of the surrounding water. Heat Ex Regulator

• Regulator “bells and whistles” are an unknown and can be problematic. Second stage regulators with multiple adjustments can do unpredictable things to heat transfer as the diver manipulates his controls. The last thing a cold-water diver should want is to make it easier to get more gas. High gas flows mean higher temperature drops and greater risk of free flow.

• Only manufacturer-certified technicians should touch your regulator if you’re going into risky waters. The technician at your local dive shop may or may not have current and valid technician training on your particular life support system. Don’t bet your life on it— ask to see the paperwork.

• Follow Navy and Smithsonian* guidance on handling and rinsing procedures for regulators in frigid waters. A single breath taken above the surface could freeze a regulator before you get your first breath underwater.

U. S. Navy reports on tested regulators are restricted. However, the list of those regulators passing all phases of Navy testing is available online. If your regulator, in the exact model as tested, is not on that list, do yourself a favor and don’t dive in frigid waters.

 

Separator small

The original Editorial Focus article is found in the digital version of the March ECO magazine here, on pages 20-25.

 

After the Heart Attack – The Healing Power of Athletic Passions

DSC06084-B2There is nothing quite like a heart attack and triple bypass surgery to get your attention.

Even if you’ve been good, don’t smoke, don’t eat to excess, and get a little exercise, it may not be enough to keep a heart attack from interrupting your life style, and maybe even your life.

Post-surgical recovery can be slow and painful, but if you have an avocational passion, that passion can be motivational during the recovery period after a heart attack. There is something about the burning desire to return to diving, flying, or golfing to force you out of the house to tone your muscles and get the blood flowing again.

My return to the path of my passions, diving and flying, began with diet and exercise. My loving spouse suggested a diet of twigs and leaves, so it seemed. I can best compare it to the diet that those seeking to aspire to a perpetual state of Buddha-hood, use to prepare themselves for their spiritual end-stage: it’s a state that looks a lot like self-mummification. Apparently those fellows end up either very spiritual or very dead, but I’m not really sure how one can tell the difference.

The exercise routine began slowly and carefully: walking slowly down the street carrying a red heart-shaped pillow (made by little lady volunteers in the local area just for us heart surgery patients). The idea, apparently, is that if you felt that at any point during your slow walk your heart was threatening to extract itself from your freshly opened chest, or to extrude itself like an amoeba between the stainless steel sutures holding the two halves of your rib cage together, that pillow would save you. You simply press it with all the strength your weakened body has to offer against the failing portion of your violated chest, and that pressure would keep your heart, somehow, magically, in its proper anatomical location.

I am skeptical about that method of medical intervention, but fortunately I never had occasion to use it for its avowed purpose.

Eventually I felt confident enough to ditch the pillow and pick up the pace of my walks. In fact, I soon found I could run again, in short spurts. It was those short runs that scared the daylight out of my wife, but brought me an immense amount of pleasure.  It meant that I might be able to regain my flying and diving qualifications.

Three months later I was in the high Arctic with good exercise capability, and most importantly the ability to sprint, just in case the local polar bears became too aggressive on my nighttime walks back from the only Ny-Alesund pub.

Stress_test
Stress test, Public Domain, from Wikimedia Commons.

After that teaching adventure, I prepared myself for the grinder that the FAA was about to put me through: a stress test. Not just any stress test mind you, but a nuclear stress test where you get on a treadmill and let nurses punish your body for a seeming eternity. Now, these nurses are as kindly as can be, but they might well be the last people you see on this Earth since there is a small risk of inducing yet another heart attack during the stress test. Every few minutes the slope and speed of the treadmill is increased, and when you think you can barely survive for another minute, they inject the radioisotope (technetium 99m).

With luck, you would have guessed correctly and you are able to push yourself for another long 60-seconds. I’m not sure exactly what would happen if you guess incorrectly, but I’m sure it’s not a good thing.

And then they give you a chance to lie down, perfectly still, while a moving radioisotope scanner searches your body for gamma rays, indicating where your isotope-laden blood is flowing. With luck, the black hole that indicates dead portions of the heart will be small enough to be ignored by certifying medical authorities. (An interesting side effect of the nuclear stress test is that you are radioactive for a while, which in my case caused a fair amount of excitement at large airports. But that’s another story.)

The reward for all the time and effort spent on the fabled road to recovery, is when you receive, in my case at least, the piece of paper from the FAA certifying that you are cleared to once again fly airplanes and carry passengers. With that paper, and having endured the test of a life-time, I knew that I’d pass most any diving physical.

IMG_0645 (2014_06_22 07_00_11 UTC)
Vortex Springs, 2010

Having been in a situation where nature dealt me a low blow and put my life at risk and, perhaps more importantly, deprived me of the activities that brought joy to my life, it was immensely satisfying to be able to once again cruise above the clouds on my own, or to blow bubbles with the fish, in their environment. Is there anything more precious that being able to do something joyful that had once been denied?

DIGITAL CAMERA
A goofy looking but very happy diver sharing a dive with his Granddaughter, July 2014.

 

 

 

 

 

 

 

 

 

 

Separator small

Without a doubt, the reason I was able to resume my passions was because I happened to do, as the physicians said, “all the right things” when I first suspected something unusual was happening in my chest. The symptoms were not incapacitating so I considered driving myself to the hospital. But after feeling not quite right while brushing my teeth, I lay down and called 911. The ambulance came, did an EKG/ECG, and called in the MI (myocardial infarction) based on the EKG. The Emergency room was waiting for me, and even though it was New Years’ eve, they immediately called in the cardiac catheterization team. When the incapacitating event did later occur I was already in cardiac ICU and the team was able to act within a minute to correct the worsening situation.

Had I dismissed the initial subtle symptoms and not gone to the hospital, I would not have survived the sudden onset secondary cardiac event.

The lesson is, when things seem “not quite right” with your body, do not hesitate. Call an ambulance immediately and let the medical professionals sort out what is happening. That will maximize your chances for a full and rapid recovery, and increase the odds of your maintaining your quality of life.

It will also make you appreciate that quality of life more than you had before. I guarantee it.

Of Mussels and Whales

Wal_Cuviera
Cuvier’s Beaked Whale. Image from Wikimedia Commons.

It was a coincidence forty years in the making. I was recently at the Scripps Institute of Oceanography, talking to Scripps professor and physician Paul Ponganis about deep diving whales. He told me about the recent discovery that Cuvier’s Beaked Whale, an elusive whale species, had been found to be the deepest diving of all whales.

How deep I asked? One whale dived to 9,816 feet, about 3000 meters. At that depth, water pressure exerts a force of about 4400 pounds per square inch (psi), equal to the weight of a Mercedes E63 sedan pressing on each square inch of the whale’s ample body surface. That is a seriously high pressure, a fact that I knew well since I had once created that much pressure, and more, in a small volume of sea water in a pressure vessel at the Florida State University.

Early in my science career I published my work on the effect of deep ocean pressure on intertidal bivalves, a mussel (Modiolus demissus) being among them. I found that if you removed the hearts of such molluscs (or mollusks) and suspended them in sea water, they would continue to beat. Furthermore, those excised hearts would beat when subjected to 5000 psi of hydrostatic pressure. As if that wasn’t surprising enough, the slight genetic differences between Atlantic subspecies and Gulf Coast subspecies of mussels resulted in the isolated hearts responding slightly differently to high pressure.

 

oyster-anatomy
If you’ve eaten live raw oysters, a cousin to mussels, you’ve eaten beating hearts like the one in this photo. (Click to enlarge. Photo credit: rzottoli, Salt Marshes in Maine, at HTTP:// wordpress.Com )
120-modiolus-demissus-excellent-mb-oct-19-20041
The mussel Modiolus demissus in their natural habitat at low tide (Photo credit: rzottoli, Salt Marshes in Maine, at HTTP:// wordpress.Com )

 

 

 

 

 

 

 

 

 

 

That was a remarkable finding I thought since none of those mussels had ever been exposed to high pressure; ever as in for millions of years. (This study occurred long before the discovery of deep sea vents and the almost miraculous growths of deep sea clams.)

Eventually my research transitioned from invertebrates to humans. Humans, like intertidal mussels and clams, are not normally exposed to high pressure. But like my unwilling invertebrate test subjects, sometimes humans do get exposed to high pressure, willingly. But not so much of it. Deep sea divers do quite well at 1000 feet sea water (fsw), manage fairly well at 1500 fsw, but don’t fare well at all at 2000 fsw. That depth seems to be the human pressure tolerance limit due to the high pressure nervous syndrome, or HPNS. At those pressures, cell membranes seem to change their physical state, becoming less fluid or “oily” and more solid like wax. Cells don’t work normally when the very membranes surrounding them are altered by pressure.

The Beaked Whale is genetically much more similar to man than are mussels. Therefore, man is far more likely to benefit by learning how Cetaceans like whales tolerate huge pressure changes, than we are to benefit from the study of deep diving (albeit forced diving) clams and mussels.

As I talked to Dr. Ponganis it was obvious to him, I suspect, that I was excited about learning more about how these animals function so beautifully at extreme depths. But to do that, you have to collect tissue samples for study and analysis in a laboratory. The only problem is, collecting useful tissue samples from living whales without hurting them may be a bridge too far. Humans rarely even see Beaked Whales, and if the Cetaceans wash up on shore, dead, their tissues have already been degraded by post-mortem decomposition, and are no longer useful for scientific study.

RoboTuna,_1994,_view_2_-_MIT_Museum_-_DSC03730
MIT’s RoboTuna; ca. 1994. Photo from Wikimedia Commons.

Potentially, here is a job for underwater Cetacean-like robots that when released in a likely Beaked Whale environment, can locate them, dive with them, and perhaps even earn their trust. And when the whale beasts least expect it, those robotic Judases could snatch a little biopsy material.

If only it were that easy.

Considering how difficult it would be to acquire living tissue samples, would it be worth the effort? Well, if man is ever to dive deeper than 1500 to 2000 feet without the protection of submarines, we must learn how, from either the mussels or the whales. My bet is on the whales. Unlike mussels, the whales dive deep for a living, to catch their preferred prey, squid and deep sea fish.

 

Separator small

What are arguably the first studies of the effects of high pressure on intertidal bivalves (mussels and clams) can be found here and here. Moving up the phylogenetic scale, Yoram Grossman and Joan Kendig published high pressure work on lobster neurons in 1990, and rat brain slices in 1991. I made the leap from mussels to humans by conducting a respiratory study on Navy divers at pressures of 46 atmospheres (1500 feet sea water), published in 1982. For a more recent review of high pressure biology applied to animals and man, see the 2010 book entitled Comparative High Pressure Biology. My theoretical musings about the mathematics of high pressure effects on living cells can be found here.

With time, these studies, and more, will add to our understanding of mammalian pressure tolerance. However, it may well take another generation or two of such scientific effort before we understand how the Beaked Whales make their record-breaking dives, and survive.