Remote Viewing – Stretching the Limits of Science in Fiction

puthoff_lg
Laser physicist Harold E. Puthoff.

I once met the Father of the U.S Remote Viewing program, unawares.

A decade ago, at the request of a Navy engineer who ended up being a character in my novel Middle Waters, I invited Dr. Harold E. Puthoff into the Navy Experimental Diving Unit to give a talk on advanced physics. He had attracted a small but highly educated and attentive crowd which, like me, had no idea that the speaker had once led the CIA in the development of its top secret Remote Viewing program.

Of late, Puthoff’s energies have been directed towards the theoretical “engineering of space time” to provide space propulsion, a warp drive if you will. Although strange by conventional physics standards, similar avant-garde notions are receiving traction in innovative space propulsion engines such as NASA’s EMdrive.

Puthoff is the Director of the Institute of Advanced Studies at Austin, in Texas, but before that, and more germane to this discussion, Puthoff was a laser physicist at the Stanford Research Institute. It was there that the CIA chose him to lead a newly created Remote Viewing program, designed to enable the U.S. to maintain some degree of competiveness with Russia’s cold war psychic spying program.

09-02-1220_26_07low
6800 feet down in the Desoto Canyon

Psychic spying was purportedly the method used by the two superpowers to visualize things from a distance; not from a satellite, but from what some call the highly developed powers of the mind’s eye. If we believe what we read on the subject, Remote Viewing was eventually dropped from the US psychic arsenal not because it had no successes, but because it was not as reliable as signal intelligence (SIGINT), satellite imagery, and spies on the ground. But, it has been argued, it might be ideal in locations where you can’t put spies on the ground, such as the dark side of the moon, or the deep sea .

Serendipitously, as I started writing this blog post, Newsweek published a review of the Remote Viewing efforts of Puthoff and others in a November 2015 issue. The article seemed fairly inclusive, at least more so than other articles on Remote Viewing I’ve seen, but the Newsweek author was not particularly charitable towards Puthoff. Strangely, the strength and veracity of Puthoff’s science was reportedly criticized by two New Zealand psychologists who, as the Newsweek author quoted, had a “premonition” about Puthoff.

“Psychologists” and “premonitions” are not words commonly heard in the assessment of science conducted by laser physicists, especially those employed by the CIA. The CIA is not stupid, and neither are laser physicists from Stanford.

To the extent that I am able to judge a man by meeting him in person and hearing him talk about physics, I would have to agree with Puthoff’s decision to ignore his ill-trained detractors. Every scientist I know has had detractors, and as often as not those detractors have lesser credentials. Nevertheless, I have the good sense to not debate the efficacy of remote viewing. I don’t know enough about it to hold an informed opinion. However, there seems to be some evidence that it worked occasionally, and for a science fiction writer that is all that is needed.

Enrico%20Fermi%20chalkboard
Nuclear physicist Enrico Fermi.

As my curiosity became piqued by the discovery of the true identity of my guest speaker at NEDU, and as I learned what he had done for the U.S. during the Cold War, I thought of another great physicist, Enrico Fermi, one of the fathers of the atomic bomb. In the midst of a luncheon conversation with Edward Teller, Fermi once famously asked, “Where are they?” The “they” he was referring to, were extraterrestrial aliens.

What became known as Fermi’s Paradox went something like this: with all the billions of stars with planets in our galactic neighborhood, statistically there should be alien civilizations everywhere. But we don’t see them. Why not? “Where are they?”

In most scientists’ opinions, it would be absurdly arrogant for us to believe we are the only intelligent life form in the entire universe. And so ETs must be out there, somewhere. And if there, perhaps here, on our planet, at least occasionally. And that is all the premise you need for a realistic, contemporary science fiction thriller.

But then there is that pesky Fermi Paradox. Why don’t we see them?

Well, they could indeed be here, checking us out by remote viewing, all the while remaining safely hidden from sight. After all, as one highly intelligent Frog once said, humans are a “dangerous species” fictionally speaking of course.

That “hidden alien” scenario may be improbable, but it’s plausible, if you first suspend a little disbelief. If we can gather intelligence while hiding, then certainly they can, assuming they are more advanced than humans. A technological and mental advantage seems likely if they are space travelers, which they almost have to be within the science fiction genre. Arguably, fictional ETs may have long ago engineered space-time, which could prove mighty convenient for tooling around the galactic neighborhood.

So, if in the development of a fictional story we assume that ETs can remote view, the next question would be, why? Is mankind really that dangerous?

Well, I don’t intend for this post to be a spoiler for Middle Waters, but I will say that the reasons revealed in the novel for why ETs might want to remote view, are not based on fear of humans, but are based on sound science. From that science, combined with a chance meeting with Hal Puthoff, the basic premise of a science fiction thriller was born.

So, to correct what some of my readers have thought, I did not invent the concept of “remote viewing”. It is not fictional; it is real, and was invented and used by far smarter people than myself, or even that clever protagonist, Jason Parker.

 

 

Eating Crow – Safe Water Temperatures for Scuba Regulators

CrowScientists and engineers love to argue, and unlike the case with politicians, compromise is not an option. Technologists speak for nature, for the truth of a universe which does not speak for itself. But when a technologist is wrong, they usually have to eat some crow, so to speak.

Stephen Hawkings, the famous cosmologist, freely admits his brilliant doctoral dissertation was wrong. Crow was eaten, and Hawkings moved on to a better, arguably more correct view of the universe.

Now, on a much less grand scale, this is my time for eating crow.

There has been quiet disagreement over the water temperature above which a scuba regulator is safe from free-flowing or icing up. Those untoward icing events either give the diver too much gas, or not enough. Neither event is good.

Based upon an apocryphal Canadian government study that I can’t seem to put my hands on anymore (government studies are rarely openly available), it has long been believed by the Canadians and Americans that in water temperatures of 38°F or above, regulator icing problems are unlikely. That temperature was selected because when testing older, low flow Canadian regulators, temperatures inside the regulator rarely dropped below 32°F when water temperature was 38°F.

Regulator ice
U.S. Navy photo.

As shown in an earlier blog post, in 42°F water and at high scuba bottle pressures (2500 psi) in instrumented second stage regulators (Sherwood Maximus) second stage internal temperature dropped below zero Celsius (32°F) during inspiration. During exhalation the temperature rose much higher, and the average measured temperature was above freezing. Nevertheless, that regulator free flowed at 40 minutes due to ice accumulation.

Presumably, a completely “safe” water temperature would have to be warmer than 42°F. But how much warmer?

My European colleagues have stated for a while that cold water regulator problems were possible at any temperature below 10°C, or 50°F. However, as far as I can tell that assertion was not based on experimental data. So as we began to search for the dividing line between safe and unsafe water temperatures in another brand of regulator, I assumed we’d find a safe temperature cooler than 50°F. For that analysis, we used a generic Brand X regulator.

To make a long story short, I was wrong.

To understand our analysis, you must first realize that scuba regulator freeze-up is a probabilistic event.  It cannot be predicted with certainty. Risk factors for an icing event are diving depth, scuba bottle pressure, ventilation (flow) rate, regulator design, and time. In engineering terms, mass and heat transfer flow rates, time and chance determine the outcome of a dive in cold water.

At NEDU, a regulator is tested at maximum anticipated depth and ventilated at a high flow rate (62.5 L/min) for a total period of 30 min. If the regulator free flows or stops flowing, an event is recorded and the time of the event is noted. Admittedly, the NEDU test is extremely rigorous, but it’s been used to select safe regulators for U.S. military use for years.

Tests were conducted at 38, 42, 45 and 50°F.

Next, an ordinal ranking of the performance for each regulator configuration and temperature combination was possible using an NEDU-defined probability-of-failure test statistic (Pf). This test statistic combines the number of tests of a specific configuration and temperature conducted and the elapsed time before freezing events occurred. Ordinal ranks were calculated using equation 1, Eqnwhere n is the number of dives conducted, E is a binary event defined as 0 if there is no freezing event and 1 if a freezing event occurs, t is the elapsed time to the freezing event from the start of the test (minutes), and k is an empirically determined constant equal to 0.3 and determined to provide reasonable probabilities, i is the index of summation.

Conshelf XIV pic 2
Click for a larger image.

Each data point in the graph to the left represents the average result from 5 regulators, with each test of 30-min or more duration. For conditions where no freezing events were observed at 30 min, additional dives were made for a 60-min duration.

As depicted, 40-regulator tests were completed, using 20 tests of the five primary second stages and 20 octopus or “secondary” second stages. Regression lines were computed for each data set. Interestingly, those lines proved to be parallel.

file0001735338997
A second stage of a typical scuba regulator. The bite block is in the diver’s mouth.

The “octopus” second stage regulator (the part going in a scuba diver’s mouth) differed from the primary only by the spring tension holding the regulator’s poppet valve shut. More negative mouth pressure is required to pull the valve open to get air than in the primary regulator.

The test statistic does not provide the probability that a given test article or regulator configuration will experience a freezing event at a given temperature. However, it does provide the ability to rank the freezing event performance of regulator configurations at various temperatures.

Our testing reveals that in spite of my predictions to the contrary, for the Brand X regulator our best estimate of a “safe” water temperature, defined as Pf = 0, is roughly 53°F for the standard or “primary” second stage regulator and 49° F for the octopus or secondary regulator.

For all practical purposes, the European convention of 50°F (10°C) is close enough.

Eating crow is not so bad. Some think it tastes a little like chicken.

Separator smallEquation 1 came from J.R. Clarke and M. Rainone, Evaluation of Sherwood Scuba Regulators for use in Cold Water, NEDU Technical Report 9-95, July 1995.

Diving a Rebreather in Frigid Water: Canister Concerns

Picture1

As evidenced by Under the Pole diving expeditions, rebreathers are being used in some of the most isolated and frigid places in the world. Some of those dive missions are surprisingly deep (111 meters, 330 feet) and long, about 2 hours.

That gives me cause for pause.

I suspect most divers are aware of the 1/3 rule for gas consumption on an open circuit (scuba) cave dive. You should use no more than 1/3 of your air supply on the way in, leaving you with 1/3 for the trip out, and 1/3 of your gas supply available in reserve. Sadly, even that amount of reserve has not saved all cave divers.

Now that cave divers are using rebreathers, the rules, at least for some, have changed. Some savvy rebreather cave divers use the rule of doubles: Always have twice as much oxygen, twice as much diluent, and twice as much canister as you think you’ll need. That plus an open-circuit or semi-closed circuit bailout should keep you safe — in theory.

Gas supply is easy to measure throughout a dive; there is a pressure gauge for all gases. But what about canister duration? Most divers assume they will have more canister duration available than gas supply; which means they don’t need to worry about canister duration. That would be a good thing, if it were true. After all, how many manufacturers provide expected canister durations for various work rates and water temperatures? Maybe, none? Or certainly very few.

I would be very surprised if manufacturers could say with certainty that during a two hour dive in -2°C (28°F) water, at depths to 111 meters that the scrubber can provide double the duration needed. That would be four hours in -2°C water, at all potential diver work rates.

Some of you may say, “Under-the-ice-diving is not like cave diving, so the doubles rule is too conservative.” I invite you to think again. Under polar ice, is there ready access to the surface? Not unless you’re diving directly under the through-ice bore hole the entire time.

In the U.S. Navy experience, obtaining useful data on canister durations from manufacturers is difficult. Duration data as a function of temperature is practically nonexistent. Therefore I will share the following information gleamed from scrubber canister testing in extreme environments by the Navy. While this blogger cannot reveal canister durations for military rebreathers, the information on the coefficient of varation (COV) is not protected. (There is no way to figure out what a canister duration is based solely on the COV.)

The following 4-minute video gives a good introduction to the coefficient of variation.

https://youtu.be/XXngxFm_d5c://

All rebreather divers should know that canister performance declines in an accelerating manner as water temperature drops between 50°F and 28°F. But what your rebreather manufacturer may not know is that the innate variability of canister durations also increases as water temperature drops. The Navy has found that trend in all types of rebreathers.

So, while canister durations drop considerably in cold water, you’re also less certain about what your canister’s endurance is going to be, because of the increase in duration variability. When canister duration drops and variability increases, a diver’s margin of safety becomes a gamble. Personally, I don’t like to gamble under water.

Picture0001
Coefficient of variation (COV, mean duration divided by the standard deviation) of a typical rebreather. Each data point is the mean of five canisters (n=5).

In the U.S. Navy, published canister durations take into account mean canister performance, and variability. That is accomplished through the use of 95% prediction intervals. The greater the variability in canister duration, the lower the published duration.

This method of determining safe canister durations has been in use by the U.S. Navy since 1999. However, I do not know if manufacturers use similar statistically-based methods for publishing canister durations. If they or you do not take duration variability into account as you dive cold, you may be in for a shock. Due to the nature of statistics, you may have 9 deep, cold dives with no CO2 problems, but find yourself in bad shape on the 10th dive.

If you did have a CO2 problem, it wouldn’t necessarily be anyone’s fault: it could just be a result of canister variability in action.

So, diver beware. Give yourself plenty of leeway in planning rebreather dives in frigid waters. After all, you do not want to become a statistic, caused ironically by statistics.

Separator small

If you have an interest in understanding the derivation of the prediction interval equation and its application, two videos of lectures by Dr. Simcha Pollack from St. John’s University may be helpful. Part I is found here, and Part 2 is found here.

Thanks to Gene Hobbs and the Rubicon Foundation, NEDU’s original report on the use of prediction limits to establish published canister durations is found here.

A Novel – A Song Just Waiting to Bust Out

SAM_0557One of the most memorable quotes I’ve heard from a child came from his experience listening to classical music. I don’t remember who said it (Google comes up empty-handed), but I’ve never forgotten it.

“A symphony is music with a song waiting to bust out any minute.”

Those words were the child’s response to listening to a symphonic piece. The little listener kept expecting to hear a song, but no sooner did the musicians seem to be closing in on a melody, than the music changed and darted off down another musical path. I suspect that was a little frustrating to the kid; but at least it kept him listening, expectantly.

Being a musician, I can fully appreciate the correctness of his innocent comment.

Classical music is technical; in fact, highly so. Orchestration is a wonderment to those of us who aren’t both talented and trained in the art. The printed lines for a solo instrument, like the clarinet I file0001662840435play, are defined by strict mathematical relationships between frequencies of sound. If the math is not precise, then the sound will not be precise and melodic. That is to say, the sound will not be music, but rather noise.

I consider myself a technical person. As a scientist, I understand the technical rigor and precision which is required for composing and orchestration, but also for scientific and engineering calculations and publications. Indeed, I’ve spent decades writing technical papers, many with a fair amount of mathematical basis. I kept the creative, the musical side, bottled up, because it’s not publishable. Technical publications are, well, technical. They are neither pretty nor tuneful.

But as I mingle vicariously with other technical writers, I find that some of them also have a pent-up desire for creative writing. With a somewhat guilty feeling, they have actually penned very good, non-technical prose. And even a few poems.

Now that I, a scientist, have released my first novel, Middle Waters, hugely imaginative compared to my day-to-day paid technical writing, I feel I have birthed a bastard child.

Oh, but how I love that child.

Now let the song begin…

 

Authorized for Cold Water Service: What Divers Should Know About Extreme Cold

The following is reprinted from my article published in ECO Magazine, March 2015.  It was published in its current format as an ECO Editorial Focus by TSC Media. Thank-you Mr. Greg Leatherman for making it available for reprinting.ECO Magazine

It is the highpoint of your career as an environmentally minded marine biologist. The National Science Foundation has provided a generous grant for your photographic mission to the waters 100 ft below the Ross Ice Shelf, Antarctica. Now you’re on an important mission, searching for biological markers of climate change.

Picture1
Under Antarctic Ice, photo by Dr. Martin Sayer.

Above you lies nothing but a seemingly endless ceiling of impenetrable ice, 10 ft thick. Having spent the last several minutes concentrating on your photography, you look up and notice you’ve strayed further from safety than you’d wanted. The strobe light marking the hole drilled in the ice where you’ll exit the freezing water is a long swim away. And, unfortunately, your fellow scientist “buddy” diver has slipped off somewhere behind you, intent on her own research needs.

You’re diving SCUBA with two independent SCUBA regulators, but in the frigid cold of the literally icy waters, you know that ice could be accumulating within the regulator in your mouth. At the same time, a small tornado of sub-zero air expands chaotically within the high-pressure regulator attached to the single SCUBA bottle on your back—and that icy torrent is increasingly sucking the safety margins right out of your regulator. You are powerless to realize this danger or to do anything about it.

At any moment, your regulator could suddenly and unexpectedly free flow, tumultuously dumping the precious and highly limited supply of gas contained in the aluminum pressure cylinder on your back. You’re equipped and trained in the emergency procedure of shutting off the offending regulator and switching to your backup regulator, but this could also fail. It’s happened before. 

As you try to determine your buddy’s position, you’re feeling very lonely. You realize the high point of your career could rapidly become the low point of your career—and an end to your very being. Picture046

The preceding is not merely a writer’s dramatization. It is real, and the situation could prove deadly—as it has in far less interesting and auspicious locations. Regulator free flow and limited gas supplies famously claimed three professional divers’ lives in one location within a span of one month.

There is a risk to diving in extreme environments. However, the U.S. Navy has found that the risk is poorly understood, even by themselves—the professionals. If you check the Internet SCUBA boards, you constantly come across divers asking for opinions about cold-watersafe regulators. Undoubtedly, recent fatalities have made amateur divers a little nervous—and for good reason.

Internet bulletin boards are not the place to get accurate information about life support safety in frigid water. Unfortunately, the Navy found that manufacturers are also an unreliable source. Of course, the manufacturers want to be fully informed and to protect their customers, but the fact remains that manufacturers test to a European cold-water standard, EN 250. By passing those tests, manufacturers receive a “CE” stamp that is pressed into the hard metal of the regulator. That stamp means the regulator has received European approval for coldwater service.

As a number of manufacturers have expensively learned, passing the EN 250 testing standard is not the same as passing the more rigorous U.S. Navy standard, which was recently revised, making it even more rigorous by using higher gas supply pressures and testing in fresh as well as salt water. Freshwater diving in the Navy is rare—but depending on the brand and model of regulator in use, it can prove lethal.

The unadorned truth is that the large majority of manufacturers do not know how to make a consistently good Performing cold-water regulator. Perhaps the reason is because the type of equipment required to test to the U.S. Navy standard is very expensive and has, not to date, been legislated. Simply, it is not a requirement.

Some manufacturers are their own worst enemy; they cannot resist tinkering with even their most successful and rugged products. This writer is speculating here, but the constant manufacturing changes appear to be driven by either market pressures (bringing out something “new” to the trade show floor) or due to manufacturing economy (i.e., cost savings). The situation is so bad that even regulators that once passed U.S. Navy scrutiny are in some cases being changed almost as soon as they reach the “Authorized for Military Use” list. The military is struggling to keep up with the constant flux in the market place, which puts the civilian diver in a very difficult position. How can they—or you—know what gear to take on an environmentally extreme dive?

My advice to my family, almost all of whom are divers, is to watch what the Navy is putting on their authorized for cold-water service list. The regulators that show up on that list (and they are small in number) have passed the most rigorous testing in the world.

Through hundreds of hours of testing, in the most extreme conditions possible, the Navy has learned what all SCUBA divers should know:

• Even the coldest water (28°F; -2°C) is warm compared to the temperature of expanding air coming from a first stage regulator to the diver. There is a law of physics that says when compressed air contained in a SCUBA bottle is expanded by reducing it to a lower pressure, air temperature drops considerably. It’s the thermal consequence of adiabatic (rapid) expansion.

• Gas expansion does not have to be adiabatic. Isothermal (no temperature change) expansion is a process where the expansion is slow enough and heat entry into the gas from an outside source is fast enough that the expanded gas temperature does not drop.

• The best regulators are designed to take advantage of the heat available in ice water. The most critical place for that to happen is in the first stage where the greatest pressure drop occurs (from say 3,000 psi or higher to 135 psi above ambient water pressure (i.e., depth). They do that by maximizing heat transfer into the internals of the regulator.

• First stage regulators fail in two ways. The most common is that the first stage (which controls the largest pressure drop) begins to lose control of the pressure being supplied to the second stage regulator, the part that goes into a diver’s mouth. As that pressure climbs, the second stage eventually can’t hold it back any longer and a free flow ensues.

• The second failure mode is rare, but extremely problematic. Gas flow may stop suddenly and completely, so that backup regulator had better be handy.

• Second stage regulators are the most likely SCUBA components to fail in cold water due to internal ice accumulation.

• Free flows may start with a trickle, slowly accelerating to a torrent, or the regulator may instantly and unexpectedly erupt like a geyser of air. Once the uncontrolled, and often unstoppable free flow starts, it is self-perpetuating and can dump an entire cylinder of air within a few minutes through the second stage regulator.

• A warm-water regulator free flow is typically breathable; getting the air you need to ascend or to correct the problem is not difficult. In a cold-water-induced free flow, the geyser may be so cold as to make you feel like you’re breathing liquid nitrogen and so forceful as to be a safety concern. Staying relaxed under those conditions is difficult, but necessary.

• Water in non-polar regions can easily range between and 34°F to 38°F; at those temperatures, gas entering the second stage regulator can be at sub-freezing temperatures. European standard organizations classify ~10°C (50°F) as the cold/non-cold boundary. The Navy has found in the modern, high-flow regulators tested to date that 42°F is the water temperature where second stage inlet temperature is unlikely to dip below freezing.

• The small heat exchangers most manufacturers place just upstream of the second stage is ineffective In extreme conditions. They quickly ice over, insulating that portion of the regulator from the relative warmth of the surrounding water. Heat Ex Regulator

• Regulator “bells and whistles” are an unknown and can be problematic. Second stage regulators with multiple adjustments can do unpredictable things to heat transfer as the diver manipulates his controls. The last thing a cold-water diver should want is to make it easier to get more gas. High gas flows mean higher temperature drops and greater risk of free flow.

• Only manufacturer-certified technicians should touch your regulator if you’re going into risky waters. The technician at your local dive shop may or may not have current and valid technician training on your particular life support system. Don’t bet your life on it— ask to see the paperwork.

• Follow Navy and Smithsonian* guidance on handling and rinsing procedures for regulators in frigid waters. A single breath taken above the surface could freeze a regulator before you get your first breath underwater.

U. S. Navy reports on tested regulators are restricted. However, the list of those regulators passing all phases of Navy testing is available online. If your regulator, in the exact model as tested, is not on that list, do yourself a favor and don’t dive in frigid waters.

 

Separator small

The original Editorial Focus article is found in the digital version of the March ECO magazine here, on pages 20-25.