A Matter of Chance: Music Makes the Video

I was recently asked to give a 30-minute after-dinner talk to the 3CPR Resuscitation Panel of the American Heart Association at their annual scientific meeting in Anaheim, CA. In the audience were scientists, cardiologists, anesthesiologists, anesthetists, emergency physicians, and resuscitation technicians. It was a multimedia event with professionally managed sound and video.

Knowing that the group would be well acquainted with the role of chance in medical procedures, I chose to use a segue from medicine into the topic of extreme adventures in military and civilian diving. The focus of the talk was on how chance can turn adventures into mis-adventures.

I revealed three areas where Navy Biomedical Research is expanding the boundaries of the state of the art in military and civilian diving. One area was in deep saturation diving, another was polar ice diving, and the third was breath hold diving.

As an introduction to polar diving, I wanted to create a video travelogue of my National Science Foundation-sponsored research and teaching trips to the Arctic (Svalbard) and Antarctica (McMurdo Station and vicinity.) These projects were spearheaded by the Smithsonian Institution, and my participation was funded in part by the U.S. Navy.

To begin the preparation of the video, I assembled my most relevant photos, and those taken by various team mates, and imported them into my favorite video editing software, which happens to be Cyberlink Director.

Then I went looking for potential sound tracks for the approximately 5 minute video. Considering the topic, I thought Disney’s Frozen would have familiar themes that might be acceptable. I rejected a number of YouTube videos of music from Frozen; most were too close to the original and included vocal tracks. Finally I came across the “Let It Go Orchestral Suite” composed by the “Twin Composers,” Andrew and Jared DePolo.

It was perfect for my application. I extracted the audio track from the Suite as shown on YouTube, imported it into Director, and lined it up with the nascent video track which included all images and other video segments.

To match the music to the video, I simply cut back on the duration for each of 97 images, keeping the other 5 videos in their native length. By experimentation, I found that 3.21 seconds per image resulted in the last image fading out as the music came to a close and the end credits began to roll.

On the first run through of the new video, I couldn’t find anything to complain about; which for me is rare. So I ran it again and again, eventually creating an mp4 file which would play on a large screen and home audio system. But I couldn’t help notice that the gorgeous score would sweeten at interesting times, and serendipitously change its musical theme just as the video subject matter was changing.

How fortunate, I thought. It was then that I began to realize that “chance” had worked its way into the production effort, in an unexpected way.

First, the music seemed to my ear to be written in 4/4 time, with each measure lasting 3.2 seconds, precisely, and purely by happenstance matching the image change rate. At a resulting 0.8 seconds per beat, or 75 beats per minute, that placed the sensed tempo in the adagietto range, which seemed appropriate for the theme of the music. (Without seeing the score, I’m just guessing about the tempo and timing. But that’s how it felt to me.)

The timing coincidence was rather subtle at first, but as the finale began building at the 3:39 minute mark, the force of the down beat for each measure became more notable, and the coincidence with image changes became more remarkable. There was absolutely nothing I could do to improve it.

In some cases the technical dissection of music can be a distraction from the beauty of the music, but I’ve done it here merely to point out that sometimes you just luck out. In this case it truly was a matter of chance.

In my mind, the DePolo Orchestral Suite makes the video. Hope you enjoy the show.

To learn more about these composers and their music, follow this link. 


Cold Water Regulator Blues

It’s a black art, the making of scuba regulators for use in polar extremes; or so it seems. Many have tried, and many have failed.

Once you find a good cold water regulator, you may find they are finicky, as the U.S. Navy recently discovered. In 2013 the Navy invested almost two hundred hours testing scuba regulators in frigid salt and fresh water. What has been learned is in some ways surprising.

Looking at a pony bottle that saved a diver when both his independent regulator systems free-flowed at over 100 feet under the thick Antarctic ice.

DSCN3557cropThe Navy has been issuing reports on cold water regulator trials since 1987. In 1995 the Navy toughened its testing procedures to meet more stringent diving requirements. Reports from that era are found at the following links (Sherwood, Poseidon).  (Here is a link to one of their most recent publicly accessible reports.)

The Smithsonian Institution and the Navy sent this scientist to the Arctic to help teach cold water diving, and to the  Antarctic to monitor National Science Foundation and Smithsonian Institution funded trials of regulators  for use in the under-ice environment. What those studies have revealed have been disturbing: many regulator models that claim cold water tolerance fail in the extreme environment of polar diving.

The Navy Experimental Diving Unit (NEDU) has developed testing procedures that are more rigorous than the EN 250 tests currently used by European nations. (A comparison between US Navy and EN 250 testing is found on this blog). All cold water regulators approved for U.S. military use must meet these stringent NEDU requirements.

Nevertheless, we learned this year, quite tragically, that the Navy does not know all there is to know about diving scuba in cold water.

For example, what is the definition of cold water? For years the U.S. and Canadian Navies have declared that scuba regulators are not likely to freeze in water temperatures of 38° F and above (about 3° C). (The 1987  Morson report identified cold water as 37° F [2.8° C] and below). In salt water that seems in fact to be true; in 38° F scuba regulators are very unlikely to fail. However, in fresh water 38° F may pose a risk of ice accumulation in the regulator second stage, with resultant free-flow. (Free-flow is a condition where the gas issuing from the regulator does not stop during the diver’s exhalation. Unbridled free flow can quickly deplete a diver’s gas supply.)

The regulator on the left free-flowed, the one on the right did not.

While a freshly manufactured or freshly maintained regulator may be insensitive to 38° F fresh water, a regulator that is worn or improperly maintained may be susceptible to internal ice formation and free-flow at that same water temperature. There is, in other words, some uncertainty about whether a dive under those conditions will be successful.

IsolatorValve1 crop
An isolator valve that can be shut to prevent loss of gas from a free flowing regulator.

That uncertainty can be expressed by a regulator working well for nine under-ice dives, and then failing on the tenth. (That has happened more than once in Antarctica.)

That uncertainly also explains the U.S. Antarctic Program’s policy of requiring fully redundant first and second stage regulators, and a sliding isolator valve that a diver can use to secure his gas flow should one of the regulators free flow. There is always a chance that a regulator can free flow in cold water.

A key finding of the Navy’s recent testing is the importance of recent and proper factory-certified maintenance.  Arguably, not all maintenance is created equal, and those regulators receiving suspect maintenance should be suspected of providing unknown performance when challenged with cold water.

This finding points out a weakness of current regulator testing regimes in the U.S. and elsewhere. Typically, only new regulators are tested for tolerance to cold water. I know of no laboratory that routinely tests heavily used regulators.

Weddell seal on the Antarctic sea ice. Photo copyright Samuel Blanc. (From Wikimedia Commons).

Considering the inherent risk of diving in an overhead environment, where access to the surface could be potentially blocked by a 1400 lb (635 kg), 11 foot (3.4 m) long mammal that can hold its breath far longer than divers can, perhaps it is time to consider a change to that policy.

About to descend through a tunnel in 9-feet of ice on the Ross Ice Shelf.


A huge Weddell Seal blocks the diver’s entry hole. He looks small here, but like an iceberg, most of his mass is underwater.



Cold Water Scuba Regulator Testing — U.S. Navy vs. EN 250

Under thick ice in the Ross Sea, near McMurdo, Antarctica.

When scuba diving under 3-m thick polar ice with no easy access to the surface, the last thing you want to worry about is a failure of your scuba regulator, the system that provides air on demand from the aluminum or steel bottle on your back.

However, cold water regulators do fail occasionally by free-flowing, uncontrollably releasing massive amounts of the diver’s precious air supply. When they fail, the second stage regulators, the part held in a scuba diver’s mouth, is often found to be full of ice.

The U.S. Navy uses scuba in polar regions where water temperature is typically -2° C (28° F).  That water temperature is beyond cold; it is frigid. Accordingly, the Navy Experimental Diving Unit developed in 1995 a machine-based regulator testing protocol that most would consider extreme. However, that protocol has reliably reflected field diving experience in both Arctic and Antarctic diving regions, for example, in Ny-Ålesund, Svalbard, or under the Ross Sea ice near McMurdo Station.

There are currently both philosophical and quantitative differences between European standards and the U.S. Navy standard for cold water regulator testing. Regulators submitted for a European CE mark for cold water diving must pass the testing requirements specified in European Normative Standard EN 250 January 2000 and EN 250 Annex A1 of May 2006. In EN 250 the water temperature requirement for cold water testing ranges from 2° C to 4° C. Oftentimes, regulators that pass the EN 250 standard do not even come close to passing U.S. Navy testing.

An iced up, highly modified Sherwood SRB3600 Maximus second stage regulator

The Navy’s primary interest is in avoiding regulator free-flow under polar ice. The breathing effort, which is a focal point of the EN 250 standard, is of lesser importance. For instance, the 1991 Sherwood SRB3600 Maximus regulators long used by the U.S. Antarctic program have been highly modified and “detuned” to prevent free-flows. You cannot buy them off-the-shelf. Detuning means they are not as easy to breathe as stock regulators, but they also don’t lose control of air flow to the diver; at least not very often. Here is a photo of one that did lose control.

NEDU performs a survival test on regulators, and any that pass the harshest test are then tested for ease of breathing. The so-called “freeze-up” evaluation breathes the regulator on a breathing machine with warmed  (74 ±10°F; 23.3 ±5.6°C) and humidified air (simulating a diver’s exhaled breath) at 198 feet sea water (~6 bar) in 29 ± 1°F (-1.7 ± 0.6°C) water. Testing is at a moderately high ventilation rate of 62.5 L/min maintained for 30 minutes. (In my experience a typical dive duration for a dry-suit equipped diver in Antarctica is 30-40 min.)

To represent polar sea water, the test water is salted to a salinity of 35-40 parts per thousand.  The possible development of a “freeze up” of the regulator 2nd stage, indicated by a sustained flow of bubbles from the exhaust port, is determined visually.

In contrast, the European standards call for slightly, but critically, warmer temperatures, and do not specify a duration for testing at an elevated respiratory flow rate. I have watched regulators performing normally under EN 250 test conditions (4° C), but free-flowing in water temperatures approaching 0° C. Those tests were run entirely by a non-U.S. Navy test facility, by non-U.S. personnel, using a U.K. produced breathing machine, with all testing being conducted in a European country. The differences in testing temperatures made a remarkable difference.

Haakon Hop of the Norwegian Polar Institute in Ny-Ålesund, Svalbard.

The NEDU testing results have been validated during field testing by scientific diving professionals under Arctic and Antarctic ice. The same regulators that excel in the NEDU protocol, also excel in the field. Conversely, those that fail NEDU testing fare poorly under the polar ice. For instance, a Norwegian biologist and his team exclusively use Poseidon regulators for their studies of sea life inhabiting the bottom of Arctic ice.  (The hard hat in the photo is to protect cold skulls from jagged ice under the ice-pack.) Poseidon produces some of the few U.S. Navy approved cold-water regulators.

As is usual for a science diver in the U.S. Antarctic Program, a friend of mine had fully redundant regulators for his dive deep under Antarctic ice. He was fully prepared for one to fail. As he experienced both those regulator systems failing within seconds of each other, with massive free-flow, he might have been thinking of the words of Roberto “Bob” Palozzi spoken during an Arctic Diving Workshop run by the Smithsonian Scientific Diving program. Those words were: “It’s better to finish your dive before you finish your gas…”

In both NEDU’s and the Smithsonian’s experience, any regulator can fail under polar ice. However, those which have successfully passed U.S. Navy testing are very unlikely to do so.


A previous blog posting on the subject of Antarctic diving may also be of interest.


McMurdo Station, Antarctica: A Research Town

A photo of Jello Wrestling among fully clothed adults was published today as an indictment of the National Science Foundation (NSF) and its off-duty recreation program for McMurdo Station, Antarctica. Since I’ve spent a little time at McMurdo Station, I’d like to come to the defense of the NSF – by doing nothing more than describing what life in Antarctica is like.

I am not, and have never been an employee of the National Science Foundation, and have never held an NSF grant. I’ve never participated in a Jello wrestling match, although it looks like fun.  So, I am unbiased about this news event. However, I am informed about the rigors of daily life at McMurdo Station.

The following link is to a Washington Times article reporting on a supposed tally of $3 billion of financial excesses within the NSF. http://www.washingtontimes.com/news/2011/may/26/tax-dollars-shrimp-treadmills-jell-o-wrestling/

What is most concerning to me, is that the Coburn report focuses on a non-science activity, designed to relieve interminable boredom in a minimalistic environment. I think that, if pressed, the report’s author would have to admit the photo has nothing whatsoever to do with waste in science funding. How much can Jello bought in bulk for the McMurdo cafeteria cost?

Click for a larger image.

As the Google image above shows, men and women who support the McMurdo and South Pole Station are isolated by vast distances from “civilization”. The closest cities with air transportation to the U.S. bases are either in Christchurch, New Zealand, or in Chile. During the winter, with 24 hours of darkness and generally horrible weather, it is virtually impossible for anyone to leave the bases. There are no flights into or out of the continent. So if anyone developes a medical problem or injury too great for the local medical support staff to handle, they are simply out of luck.

During the winter months, the size of support and scientific staff are greatly reduced, so those sharing the bleak winter together get to know each other, well. The contract staff during both winter and summer is composed largely of young, college-age men or women who are healthy, energetic, and are signing on for adventure.

But think about it. With 24 hours of darkness during the winter, the opportunities for recreation are minimal. It typically isn’t safe, or even possible, to go for walks or runs outdoors. A trip away from base, or even close by, could prove fatal if the weather were to change suddenly, which it often does. There are no soccer fields, no ball parks. And even worse, for those of you forever connected to the Internet,  there is barely enough bandwidth down there to support email on a bank of shared computers. Want to send a photo of yourself home to the folks? Forget about it. At least that’s how it was when I was there a couple of years ago.

View from Hut Point, McMurdo. Click for a larger image.

Life in Antarctica, at its best, is a spartan existence in a harsh, unforgiving environment. So how do these young men and women entertain themselves?

The fact of life is that off-duty entertainment, anywhere in the world, can lead to pregnancy, which in Antarctica can easily become a medical emergency.  And medical emergencies can lead to drama very quickly since flights out of McMurdo are nonexistent in the winter and difficult to arrange, and very expensive, even during the summer. So group entertainment that keeps these young healthy adults occupied is a wonderful idea.

I admit I do not know all the facts behind the firing of the Jello Wrestling organizer, reported in various news accounts.  But I have to wonder: why would off-duty entertainment be a reason to very publicly condemn the organization that funds and staffs the McMurdo Station, and funds a large proportion of science research in the U.S.? 

McMurdo Station seen from the Ross Ice Shelf

As a scientist I do not understand the denigration of the noble discipline that helped our country attain greatness, defend itself, and lead our way into the future. If science is to be attacked in public, I would ask that those attacking it be held accountable for the damage they do to science institutions, and to the minds of young men and women on the verge of becoming scientists. As a country we decry our failing leadership in science and engineering, and complain of the poor quality of education in the math and science disciplines, and yet we allow, and even fund,  studies that criticise  programs that have long been working safely and productively in the harshest environment on Earth.

The U.S. Antarctic Program is a success story, in spite of what headlines of the day might suggest.

Diving Under Antarctic Ice

You are 100 feet down using scuba, with your dive light spotlighting the most exotic looking Sea Hare you’ve ever seen.

It’s noon at McMurdo Station, Antarctica but it’s dark at your depth because between you and the surface of the Ross Sea lies19 feet of snow-covered ice.  Your dive buddy has drifted about 100 feet away, but you can see him without hindrance in the gin clear water of the early Antarctic springtime.

The 800 foot water visibility also means you can easily see the strobe light hanging on the down line 200 feet away, the line leading to the three and a half foot diameter hole bored through the ice.

Under these conditions, you should not have to worry about your regulator, but you do, because you know that any scuba regulator can fail in 28° F water, given enough opportunity. You also know that some regulators tolerate these polar conditions better than others, and you are using untested regulators, so yours might free-flow massively at any moment.

Should that happen, you have a back-up plan; you will shut off the free flow of air from your failed regulator with an isolation valve, remove the failed second stage from your numb and stiff lips and switch to a separate first and second stage regulator on your bottle’s Y-shaped slingshot manifold, after first reaching back and opening the manifold valve. Of course, that backup regulator could also free-flow as soon as you start breathing on it – as has already happened to one of your fellow test divers.

In that situation you would have no choice except to continue breathing from what feels like a torrent of liquid nitrogen, teeth aching from the frigid air chilled to almost intolerable temperatures by unbridled adiabatic expansion, until you reach your dive buddy and convince him that you need to borrow his backup regulator. Once he understands the gravity of the situation, that two of your regulators have failed, then the two of you would buddy-breathe from his single 95 cu ft bottle as you head slowly towards the strobe marking the ascent line. And of course he will be praying that his own primary regulator doesn’t fail during that transit.

Once you reach the ascent line you are still not out of difficulty. The two of you cannot surface together through the narrow 19-foot long borehole. So you would remove your regulator once again and start breathing off a pony bottle secured to the down line. Once it is released from the line, you can then make your ascent to the surface; but only if a 1300-pound Weddell seal has not appropriated the hole. In a contest for air, the seal is far more desperate following an 80 minute breath-hold dive, and certainly much more massive than you. Weddells are like icebergs – their cute small face sits atop a massive body that is a daunting obstacle for any diver. 

But you even have a plan for that — you’ve heard that Weddell seals don’t like bubbles, and they get skittish about having their fins tugged on, and will thus relinquish the hole to you. … At least, that’s what you’ve been told. You certainly hope he would leave before you consume the meager amount of air in your pony bottle.

The text above was taken from a U.S. Navy Faceplate article I wrote concerning  a 2009 Smithsonian Institution sponsored diving expedition to Antarctica in which I participated. On and under-the-ice photos were taken by expedition members Drs. Martin Sayer and Sergio Angelini.