The Sinking of the Montrose

“If it had been a snake, it would’ve bit me.”

That phrase is common in the Southern United States, often shouted in surprise when you’re vainly looking for something, and eventually discover it right in front of you.

Well, here’s an example of when the snake did bite, figuratively, and ended up sinking a ship.

The Ship

In 1962, the one-year-old, 5,000 ton displacement, 444-foot-long British freighter, the M/V Montrose, entered the Great Lakes after its fifth transatlantic voyage from its homeport of London, England. 

On June 30, 1962, it was docked at the Detroit Harbor Terminal taking on 200 tons of aluminum. Once the ship was fully loaded, a Canadian Great Lakes pilot boarded the ship at night to guide the vessel through the Detroit River, north towards Lake St. Clair and the other Great Lakes.

The River

The Detroit River connects Lake Erie at its southern end and runs generally northeast approximately 28 miles to Lake St. Clair at the north. It is bordered by Canada’s Ontario Province on the eastern side and Michigan in the United States on the opposite bank. The river’s strong current runs to the south towards Lake Erie.

The Collision

Now, imagine the chagrin of the Canadian pilot as he guided the vessel across the downside shipping lane to reach the upside lane on the Canadian side of the river. That course took it directly into the path of a heavily loaded barge on the American side, heading down the Detroit River. The resulting collision ripped a 48-foot long and as much as 24-feet wide gash in the ship’s port side bow.

The freighter immediately started flooding at the bow, soon raising the rudder and propellers out of the water. With no way to control the sinking ship, the crew and ship drifted in the strong Detroit River current, before running aground beneath the Ambassador Bridge connecting Detroit with the Canadian city of Windsor, Ontario.

The Montrose as it was foundering. Water was pouring in through a large gash in the bow’s port side.

This expensive mistake occurred in July, 1962, and I was there to record the aftermath, as were thousands of other onlookers. The links to other photos and videos are found below.

A fuzzy photo I took as a Bob-Lo excursion boat was moving past the starboard hull of the Montrose. The port side settled on the river bottom 35-feet down.

Sharper photos were taken by various civilians and published in the following link.

https://www.detroityes.com/mb/showthread.php?12005-1962-Ship-capsized-in-Detroit-River-under-Ambassador-also-gas-storage-tanks

A better photo of the starboard hull taken from a Bob-Lo boat approaching close to the wreck.
Photo taken from the opposite shore. About a third of the ship’s deck and superstructure is visible.

I imagine that salvage or other commercial divers were required to inspect the hull and attach lifting cables at the appropriate points. Typically, they might have wanted to weld patching plates over the huge gash in the hull. But the ship lay on its damaged side, so no patches could be applied until the ship was righted.

View of the stern of the wreck from the Ambassador Bridge connecting the U.S. and Canada.

I wish I had those divers’ stories, but so far, I haven’t found any. Salvage divers tend not to talk about their arduous, risky, and sometimes horrifying work. Fortunately, this time there were no casualties. Every crew member on both vessels was rescued, having suffered minimal injuries.

The salvage plan involved righting and raising the vessel using large floating cranes on barges. Frankly, I cannot imagine the load on those lifting cables. But as you can see in following photo, there were many cables attached to the bow preventing the ship from drifting further down current. They likely helped stabilize the craft once the bow was partially above water.

The ship after the bow had been partially raised.

No doubt a great deal of engineering calculations (and maybe educated guesses?) went into determining the number and placement of those cables. Salvage engineering is a torturous task, with calculations at that time being done by hand or using a slip stick (slide rule).

Below is a National Museum of American History slide rule identical to my personal Pickett slide rule, Model N1010-ES Trig. A similar slide rule accompanied the Apollo astronauts to the moon.

Digital calculators and computers were not readily available in 1962.

The following link is from the Lake Shore Guardian, and contains ample details of the accident. It is an interesting account. http://www.lakeshoreguardian.com/site/news/1037/MV-Montrose#.YDgVd-hKiUk

Analysis

So, how could highly experienced and qualified seamen drive their ship at full speed directly into the path of a well-lighted barge, as was reported by the ensuing investigation?

The Lakeshore Guardian report does not give it a name, but I will: “cognitive blindness.” Cognitive blindness in trained and alert individuals often occurs when people are distracted. In this case, that distraction was another freighter pulling into the same berth the Montrose was attempting to vacate. The Montrose pilot made all ahead full to keep a safe separation from the ship coming in close behind it.

In their distracted state, they did not see the navigation lights from the oncoming barge, did not hear the barge’s warning whistles and horn blasts, and never responded with their own emergency signal until the last second. By then, it was too late to slow their ship, or dodge the barge.

Cognitive blindness caused by distraction has caused old and experienced automobile drivers to pull directly in front of oncoming vehicles. One such fatal accident occurred at an intersection my wife and I frequently traverse. The driver was physically capable of seeing the oncoming traffic, but in that and similar cases, their brain must not have recognized the danger.

In the link below, the U.S. radio program NPR interviewed Christopher Chabris and Daniel Simmons about their book, named after the psychologist’s invisible gorilla test. 

https://www.npr.org/templates/story/story.php?storyId=129934804

The two psychologists had subjects watch a basketball game. Subjects were instructed to keep track of the number of ball passes between players. However, that objective was a distraction. The researchers really wanted to know if their research subjects noticed a man in a gorilla suit walking across the court. Remarkably, more than 50% of the test subjects never saw the gorilla.

A distraction while watching a video may be harmless, but a distraction while piloting a 5,000 ton vessel can, and was, disastrous. Luckily, no lives were lost, that time.

Among the multitude of other writings about the potential effect of distractions, is a new book on human factors.

While the work of Gareth Lock is focused on diving, the psychological factors it discusses apply across all disciplines, including seamanship. Chapter 7, Situational Awareness, has an interesting and relevant sub title: “Just because it’s there, it doesn’t mean you’ve recognized its significance.”

In summary, the deleterious effect of cognitive blindness can be found in all disciplines, including combat, aviation, diving, driving, space and seafaring.

As they say in combat, “The enemy you don’t see is the one that will kill you.”

The highlighted image at the top of this post is from the Walter P. Reuther Library at Wayne State University. http://reuther.wayne.edu/node/4331

“Capt. Ralph Eyre-Walker stands on the side of his wrecked British freighter, ‘The Montrose’. The freighter collided with a cement barge and sank in the Detroit River just downstream of the Ambassador Bridge, Detroit, Michigan.”

Photographer’s (Tony Spina) note: “I rode out with the captain the next day so he could get some of his belongings and captured this shot.”

Root Causes: Some Accidents Are No Accident

Interesting flights and interesting dives provide an opportunity for post-event introspection; debriefing if you will.

Professionally, I am called upon to analyze fatalities and near-misses for the Navy and, occasionally, the Air Force. Personally, I spend even more time analyzing “what ifs” for my own activities.

For example, recently I was preparing a video of one of my more beautiful nighttime flights with a passenger, departing the coal-mining regions of Pennsylvania, heading south over the valleys and mountains of Appalachia as the early morning sun began to brighten our part of the world. Sunrise crop Editing that video gave me a chance to reflect on the pre-flight and in-flight decisions I made that day. There were many decisions to be made, and those decisions resulted in not only a safe flight, but a spectacular flight.

But like most things, there was also a risk, calculated, and weighted, and recalculated as conditions in flight and on the ground changed in the face of aggressive weather.

In very real ways, single pilot IFR (instrument flight rules) flight is akin to cave diving. They are both technically challenging, rewarding solo activities. However, you better be on your game, or else not play.

I was cave diving before cave diving was cool; before it was considered a technical diving specialty, before safety rules and high quality equipment was available. Trimix, scooters, and staged decompression were all decades in the future, and frankly the safety record at that time was atrocious. I am alive because I had the good sense to limit my penetration; “just a little” was enough of a sobering experience, about which I have previously written.

But this posting is not about moderation; it is a warning to those who would, for whatever reason, deliberately make bad decisions, one after the other. If after a chain of such deliberate misadventures, a fatality results, then I would say that fatality is no accident. It is a procedure; a flawed process of decision making with a more or less guaranteed fatal outcome.

Iliffe&logo
Dr. Tom Iliffe, Texas A&M University at Galveston

Lest you lose interest in reading this post because you believe all cave divers are loonies, rest assured that could not be further from the truth. Where I work we have four very active cave divers, highly intelligent, experienced, diving deep breathing trimix (helium/nitrogen/oxygen) when necessary using scuba and rebreathers. They are safe divers who are on the cutting edge of diving research when they’re not diving for pleasure. In fact, two of them are the U.S Navy’s diving accident investigators, so they know all too well about underwater misadventures.

Friends met early in my career have been the cave explorers of the 70’s and 80’s; names you may know like Bill Gavin and John Zumrick. Another long-time friend from the Navy’s Scientist in the Sea Program, and of whom I am quite envious, is Dr. Tom Iliffe, a biologist constantly on the front edge of underwater cave biology. (My draft novel, Children of the Middle Waters, includes a story about his beloved Remipedes.)

All these cave divers have survived due to their sane and balanced approach to risk management; moderation in all things. But sadly, not all divers I’ve come to know, one way or the other, have been so sensible and measured.

One was a wonderfully gracious man, a Navy diver who had a hobby: free diving. He’d tell me how he enjoyed surprising divers in the main cave at Morrison Springs, Florida when he would swim up to them and wave, while wearing no breathing equipment at all except that with which he was born.

I’m sure they were shocked; I know I would be.

After a while, as he gained experience with this solo recreation, he began to confide in me, and ask me questions about events he’d experienced. He told me how pleasant it was sometimes when he would surface. I warned him about shallow water blackout, loss of consciousness on ascent, and explained the physical laws that made breath-hold diving so dangerous; at least in the manner in which he practiced it.

FlMorrisonSpring
Morrison Springs, Florida. Photo licensed under Wikimedia Commons.

The last day I saw him alive, he once again came in for consultation, and told me about the euphoria he had experienced a few days before. I was of course extremely concerned and told him that what he described sounded like a near death experience. The next time he might not be lucky enough to survive, I told him. Later I heard more of that story; the previous weekend he had been found floating unconscious on the surface, but was revived.

Soon after that, this diver was again found, but this time his dive had proven fatal. His personal agenda for thrills exceeded all bounds of either training or common sense. And those thrills killed him.

The only solace I could find was that he wanted to share his experience and bravado, but he clearly was not interested in really hearing the truth, no matter how hard I worked to educate and dissuade him. While some might call this young man’s mental status as a perpetual death wish, I would argue that he never consciously thought he would die; at least not that way. Life was good, in his perspective, and I suspect he thought he was smart enough to make sure it continued that way.

Unfortunately when we were talking, we did not know just how close the end was.

5791863806_6fcd3452fc_o
Jackson Blue Spring, Marianna, Florida. Photo by Paul Clark, released under Creative Commons license.

The same was true I suspect for another well-liked diver who was the subject of a fatality report I helped write several years later. It was a rebreather fatality at Jackson Blue Spring in Marianna, Florida. The decedent was reportedly an experienced diver. I won’t belabor the story because the NEDU report is available on the internet (released by his family and available on the Rebreather Forum).

Nevertheless, the sequence of events leading to his demise involved a surprisingly long list of decision points which should have prevented the fatal dive from occurring. As each opportunity to change the course of events was reached, poor choices were made. In combination those choices led inexorably to his demise.

By now we know that even the U.S. Navy is not immune to poor decision trees. In fact, I would argue that wishful thinking is a common factor among people with intelligence and technical ability, and those with a “get it done” attitude. People who fix problems for a living are seemingly resistant to admitting that sometimes the bridge really is too far, and some problems are better fixed in the shop than in the field.

Separator small

Gareth Lock of Cranfield University, Bedfordshire, U.K. is currently collecting data on diving incidents through a questionnaire on “The Role of Human Factors in SCUBA Diving Incidents and Accidents”. Like me, he has both an aviation and diving background. Gareth is serious about trying to understand and reduce diving accidents. Links to a description of his work, and his questionnaire can be found here and here. If you are a diver, please consider contributing much needed information.