A Matter of Chance: Music Makes the Video

I was recently asked to give a 30-minute after-dinner talk to the 3CPR Resuscitation Panel of the American Heart Association at their annual scientific meeting in Anaheim, CA. In the audience were scientists, cardiologists, anesthesiologists, anesthetists, emergency physicians, and resuscitation technicians. It was a multimedia event with professionally managed sound and video.

Knowing that the group would be well acquainted with the role of chance in medical procedures, I chose to use a segue from medicine into the topic of extreme adventures in military and civilian diving. The focus of the talk was on how chance can turn adventures into mis-adventures.

I revealed three areas where Navy Biomedical Research is expanding the boundaries of the state of the art in military and civilian diving. One area was in deep saturation diving, another was polar ice diving, and the third was breath hold diving.

As an introduction to polar diving, I wanted to create a video travelogue of my National Science Foundation-sponsored research and teaching trips to the Arctic (Svalbard) and Antarctica (McMurdo Station and vicinity.) These projects were spearheaded by the Smithsonian Institution, and my participation was funded in part by the U.S. Navy.

To begin the preparation of the video, I assembled my most relevant photos, and those taken by various team mates, and imported them into my favorite video editing software, which happens to be Cyberlink Director.

Then I went looking for potential sound tracks for the approximately 5 minute video. Considering the topic, I thought Disney’s Frozen would have familiar themes that might be acceptable. I rejected a number of YouTube videos of music from Frozen; most were too close to the original and included vocal tracks. Finally I came across the “Let It Go Orchestral Suite” composed by the “Twin Composers,” Andrew and Jared DePolo.

It was perfect for my application. I extracted the audio track from the Suite as shown on YouTube, imported it into Director, and lined it up with the nascent video track which included all images and other video segments.

To match the music to the video, I simply cut back on the duration for each of 97 images, keeping the other 5 videos in their native length. By experimentation, I found that 3.21 seconds per image resulted in the last image fading out as the music came to a close and the end credits began to roll.

On the first run through of the new video, I couldn’t find anything to complain about; which for me is rare. So I ran it again and again, eventually creating an mp4 file which would play on a large screen and home audio system. But I couldn’t help notice that the gorgeous score would sweeten at interesting times, and serendipitously change its musical theme just as the video subject matter was changing.

How fortunate, I thought. It was then that I began to realize that “chance” had worked its way into the production effort, in an unexpected way.

First, the music seemed to my ear to be written in 4/4 time, with each measure lasting 3.2 seconds, precisely, and purely by happenstance matching the image change rate. At a resulting 0.8 seconds per beat, or 75 beats per minute, that placed the sensed tempo in the adagietto range, which seemed appropriate for the theme of the music. (Without seeing the score, I’m just guessing about the tempo and timing. But that’s how it felt to me.)

The timing coincidence was rather subtle at first, but as the finale began building at the 3:39 minute mark, the force of the down beat for each measure became more notable, and the coincidence with image changes became more remarkable. There was absolutely nothing I could do to improve it.

In some cases the technical dissection of music can be a distraction from the beauty of the music, but I’ve done it here merely to point out that sometimes you just luck out. In this case it truly was a matter of chance.

In my mind, the DePolo Orchestral Suite makes the video. Hope you enjoy the show.

To learn more about these composers and their music, follow this link. 


How Cold Can Scuba Regulators Become?

The Arctic science diving season is in full swing (late May). Starting in September and October, the Austral spring will reach Antarctica and science diving will resume there as well.

Virtually all polar diving is done by open-circuit diving, usually with the use of scuba. Picture046

As has often been reported, regulator free flow and freeze up is an operational hazard for polar divers. However, even locations in the Great Lakes and Canada, reachable by recreational, police and public safety divers, can reach excruciatingly cold temperatures in both salt and fresh water on the bottom.

Sherwood Fail

Decades ago a reputed Canadian study measured temperatures in a scuba regulator, and found that as long as water temperature was 38° F or above, temperatures within the second stage remained above zero.

Recent measurements made on modern high-flow regulators at the U.S. Navy Experimental Diving Unit show that the thermal picture of cold-water diving is far more complex than was understood from the earlier studies.

NEDU instrumented a Sherwood Maximus regulator first and second stage with fast time response thermistors. The regulators were then submerged in 42°, 38°, and 34° F fresh water, and 29° F salt water, and ventilated at a heavy breathing rate (62.5 liters per minute), simulating a hard working diver.

In the following traces, the white traces are temperatures measured within the first stage regulator after depressurization from bottle pressure to intermediate pressure. That site produces the lowest temperatures due to adiabatic expansion. The red tracing was obtained at the inlet to the second stage regulator. The blue tracing was from a thermistor placed at the outlet of the “barrel” valve within the second stage regulator box. Theoretically, that site is exposed to the lowest temperatures within the second stage due to adiabatic expansion from intermediate pressure to ambient or mouth pressure.

Regulators were dived to 198 ft (60.4 meters) and breathed with warm humidified air for 30-minutes at the 62.5 L/min ventilation rate. The regulator was then brought to the surface at a normal ascent rate.

To make the breathing wave forms more distinct, only one minute of the 30-minute bottom time is shown in the following traces, starting at ten minutes.

The first two tracings were at a water temperature of 42° F. In the first tracing, bottle pressure was 2500 psi, and in the second, bottle pressure was 1500 psi. (For all of these photos, click the photo for a larger view.) 42 2500 SM2

Color code

Color coding of thermistor locations, all internal to the regulator.

42 1500 SM2



When bottle pressure was reduced from 2500 psi to 1500 psi, all measured temperatures increased. The temperature at the entrance to the second stage oscillated between 0° and  1°C. At 2500 psi that same location had -1 to -2°C temperature readings.






The next two tracings were taken in 29° F salt water. The coldest temperatures of the test series were in 29° F water with 2500 psi bottle pressure.

29 1500 SM2

29 2500 SM2










As a reminder, 32°F is 0°C,  -22° C is equal to -7.6° F, and -11°C is 12.2°F. At a bottle pressure of 2500 psi, the temperature inside the second stage (blue tracing) never came close to 0° C. So we’re talking serious cold here. No wonder regulators can freeze.

Frozen Reg 1_hide


Separator small

This material was presented in condensed form at TekDiveUSA 2014, Miami. (#TekDiveUSA)


How to Teach Ice Diving When the Arctic Is Melting

In 2007 Michael Lang of the Smithsonian Institution’s Scientific Diving Program sponsored a spring-time ice diving course in the high Arctic at Ny-Ålesund, Svalbard, in an area generally called Spitzbergen.

Ny-Ålesund, an international Arctic research town situated at 78°56’N, 11°56’E, is the most northern continuously operated community. It sits on the shore of a fjord called Kongsfjorden. In the springtime, the sea ice on the Kongsfjorden is usually several feet thick, providing an inviting platform for ice-diving operations.

North Pole Hotel, Ny-Ålesund, Svalbard

However, during the last decade the sea ice has been becoming thinner and sparser. By the time we arrived, there was virtually no ice on the fjord. The closest ice source was a glacier over two miles away. With no ice, polar bears could not capture their ringed seal prey, and were thus hungry, leading undoubtedly to the polar bear encounter described in an earlier posting (April 12).

It also left the course instructors, and I was once of them, in a quandary. It was expensive transporting diving scientists to the high Arctic to learn ice diving operations, and there was no ice to be seen. It appeared to us that the Arctic really was melting, surprisingly early in this case.

Although we had a few frigid days during our week-long stay, frigid enough to remind us we were close to the North Pole, one memorable day was almost balmy, reaching 0° C (32° F). Looking out over the fjord I saw mini-icebergs, recently calved by the rapidly melting glacier a few miles away.

Mini-icebergs, born on an unusually warm day

The word went out to launch all divers.

Dry land and underwater cameras, and high-definition video were working overtime to record the encounters between divers and ice. The result was some striking photos of delicately scalloped floating ice, with divers getting into the frames — just to prove they were indeed “ice-divers.” Unfortunately, that was not the type of experience that had been planned for those scientists.

Transparent glacial ice

As you might imagine, the water in the fjord was still bitterly cold, so the part of the course designed to teach about human and equipment survival in cold water was fully accomplished.

However, due to the growing sparseness and unreliability of the Arctic sea ice cover, the Smithsonian Diving Program has now moved its training and testing operations to McMurdo Station, Antarctica (see April 11 and May 26th posting). There, at least for the time being, lies plenty of thick sea ice covering the Ross Sea during the austral springtime.

I had not been impressed by the global warming rhetoric before I traveled to the Arctic. However, having seen the consequences first hand, at least in the far North, I get the strong impression that there are undeniable local climate changes occurring. Whether it is a truly global change, and whether man is somehow responsible, is an area of speculation that I will not venture into.

Only time will tell.