Professional Diving, Truth, and the Uncertainty Principle

Is anything known for sure?

Heisenberg’s Uncertainty Principle applied to quantum events avows that there is no certainty until you look. Well, this morning, I looked, and I’m just as confused as ever.

It was a chilly morning in late November. As we warmed up with coffee, I wondered how cold it was outside. So, in the modern style, my wife and I checked the Weather Channel on our phones. One indicated it was 47°F, but the other showed it was 48°F.

That can’t be, I said. So, with identical phones side by side, both tuned into Panama City Beach, Florida weather on the Weather Channel, one phone said it felt like 45°F, and the other said it felt like 43°F.

As Charlie Brown would say, “Good grief.”

Wanting to find some agreement among our devices, I checked a nested set of humidity and temperatures sensors grouped together in our kitchen. Humidity indicators are notoriously inaccurate, yet amazingly, the measured humidity was in reasonable agreement. But inside temperature varied from 70.3°F to 72.8°F.

According to Segal’s Law, “A man with a watch knows what time it is. A man with two watches is never sure.”

This aphorism is falsely attributed to Lee Segall of KIXL, now KGGR in Dallas. Regardless of the source, it is often repeated because it makes such good sense. If you multiply the number of devices three times, as above, the situation is no more precise. (But that’s where statistics comes in, I suppose.)

Giving up on simple things like local environmental parameters, I turned to the latest news on the VAERs update for the vaccines.

I wish I hadn’t. Yes, there is a chance you’ll be fine, but there’s also a small chance you’ll have heart problems and even a small chance you’ll die.

Frankly, my one-time shot at slot machines and the roulette table in Vegas did not end well. So, is there anything we know that can be guaranteed accurate?

Diving

I’ve spent a long Navy career in diving science, so I know there are serious certainties there. If you consume more air than is in your scuba tank, you’ll drown. If you stay down too long and surface too quickly, you’ll get the bends, aka decompression sickness.

But what if I use a decompression computer to plan my dive and follow its guidance to the letter? Unfortunately, there’s still a chance you’ll end up in a treatment chamber. Both people’s health and the water environment change constantly, and no decompression algorithm is perfect, or omniscient.

Undersea Oxygen Clinic, Tampa, Florida

From an engineer’s perspective, the tensile strength of a bolt is known within strict limits. If the force applied to that bolt exceeds its limits, then bad things might happen. Buildings might fall, or planes might crash. Or your muffler might fall off.

It’s hard to know what the effect of a broken bolt will be unless you understand precisely the function of that bolt. There is uncertainty in the outcome of a bolt breaking.

Uncertainty vexes some engineers to no end. I’ve watched them squirm as I reveal the role of statistics and probability in acceptance decisions about diving equipment. People are not bolts whose tensile and shear strength can be measured. As Heisenberg predicted (out of context), a dive outcome cannot be predicted with certainty.

Equipment Testing

The same thing applies to diving equipment. The Navy Experimental Diving Unit is entrusted with determining the safety and suitability of underwater breathing apparatus. Both physiologists and engineers envision a line in the sand for a given water depth and diver breathing rate.

If a UBA exceeds that line during testing, it should be rejected for military use. Right? After all, a limit is a limit.

Test and Evaluation Laboratory, Navy Experimental Diving Unit, Panama City, Florida. Photo by Stephen Frink.

Well, not exactly. When translating engineering limits into human terms, things get messy.  If a published limit is exceeded, just like taking the COVID vaccine, some people will fare well, while others may pass out. In other words, failure is classified as the probability of an untoward event where untoward translates to anything that threatens a diver or a diving mission.

For any given dive, and any given diver, the probability of a dive failure cannot be known precisely. Dive failure, like decompression sickness, is probabilistic.

One type of untoward event: Ice inside a second-stage scuba regulator.

To illustrate, the following table and text are from NEDU Technical Report 16-04, Physiological Event Prediction in Evaluations of Underwater Breathing Apparatus, October 2016.

Usually, a UBA evaluated at NEDU is suitable for most diving depths and any foreseeable work/ventilation rate, as shown in Table 1.

The only time that limits were exceeded was at the greatest depth and ventilation rate.

But what if the data had revealed a slightly larger “out of limits” region, as in the next table? What decision regarding safety would then be made?

Hypothetical Test Data

In this hypothetical case, human judgment is required. It is not sufficient to declare the diving equipment unsafe for use. It simply means divers need to pace themselves when working and breathing hard near a depth of 200 feet. Reducing their workload enough to slow their breathing to 62 liters per minute or less (still a high ventilation rate) is a safe way to keep the UBA within limits.  

This is nothing new. Every salvage diver knows to occasionally interrupt hard work periods with periods of rest. Catching your breath is kind of important.

Limits are not absolute

As a person with too many watches, or thermometers can attest, you can’t be sure what all the various goal numbers and limit numbers mean. Instead, collectively they should be used as a guide to safe diving.

Hanging on the umbilical in a KM 37.

Whether you’re a sport diver or professional, if an underwater breathing apparatus is functioning normally but doesn’t meet all of the EU (EN250) or U.S. Navy engineering limits under all possible testing conditions, that doesn’t mean it’s not a useful piece of diving gear. You just have to use it judiciously. After all, good human judgment is always required for safely operating life support equipment.

It is a wise diver who remains mindful of their life support system’s limitations and plans their dive to stay within those limitations. That way, the probability of experiencing an untoward event is minimized.

Hydrogen Diving: The Good, The Bad, the Ugly

In the preceding blog post, I reminded the reader that the Earth’s supply of helium is limited. It is not a renewable resource.

Being a diving professional, I am not concerned about the consequence of a helium shortage on party balloons. But I am thinking about the potential consequences on diving.

So, knowing that hydrogen has both good and bad traits, it would be prudent to begin thinking about whether or not there is a way to safely substitute hydrogen for helium in technical, scientific, commercial and military diving.

Perhaps the word “bad” is too much of an understatement. Perhaps “horrible” would be a better descriptor for something like the Hindenburg disaster.

With that sobering reminder of what can happen, we now cautiously move on to the science.

First, we begin with the explosion hazard of hydrogen in binary mixtures of hydrogen and oxygen.

For diving in the 10 to 20 bar range, 326 to 653 fsw range, the upper explosion limit is 94.2 molar percent. So that means that if a binary gas mixture contains 96% hydrogen and 4% oxygen, it should not explode when ignited.

Those underlined words are important. An explosive mixture of hydrogen and oxygen will not explode without an ignition source. Proof of that is exhibited in many college introductory chemistry lectures, and documented in the following YouTube video.

Arne Zetterström

As a forecast of our potential future, during World War II, Sweden was deprived of a ready source of helium coming from the U.S. and elsewhere. So, the clever and industrious Arne Zetterström conducted a series of experimental deep, hard hat dives from 1943 to 1945 using a mixture of 96% hydrogen and 4% oxygen on dives ranging from 12 to 17 bar.

Once at depth, Zetterström switched from a non-hydrox gas mixture to the “hydrox” gas mixture. His initial test dive was to 111 msw (362 fsw, 12 bar), progressing through six dives to a maximum depth of 160 msw (522 fsw, 17 bar).

That dive series was successful. Unfortunately, on the last dive on 7 August 1945, Zetterström died tragically when his dive tenders mistakenly pulled him directly to the surface from the bottom depth of 522 fsw. He died from fulminant decompression sickness.

From the above table we see that modern measurements confirm that Zetterström chose his gas mixes wisely. At a 96 mol% of hydrogen, he was above the upper explosion limit. If there had been an unexpected ignition event, his breathing gas mixture would not have exploded.

I have confirmed the oxygen partial pressure for Zetterström’s dives using PTC Mathcad Express 3.1 and will share the process.

First, I show pressure conversions familiar to Navy divers and diving scientists, but not known to most others.

For Zetterström’s 111 msw (362 fsw) dive, the partial pressure of oxygen (PO2) would have been 0.478 atm, at the top end of the target range (0.4 to 0.48) for U.S. Navy chamber oxygen atmosphere during saturation diving. A PO2 of 0.48 is believed to be the highest PO2 tolerated for extended periods. Saturation dives sometimes last over a month.

For Zetterström’s 6th and last dive, to 160 msw (522 fsw), the oxygen partial pressure was 0.7 ata, about half of what it normally is in modern electronic rebreathers with fixed PO2.

A far more detailed story of the Zetterström Hydrox dive series can be found in this book.

Arne Zetterström Memorial Dive

In 2012, the Swedish Historical Diving Society and the Royal Institute of Technology (KTH) Diving Club, Stockholm, conducted an Arne Zetterström Memorial dive to a relatively shallow depth of 40 msw or 131 fsw. The original 96% – 4% ratio of hydrogen and oxygen was maintained, resulting in a gas mixture with a PO2 of 0.20 atm.

As reported in the KTH Dive Club’s Dykloggen (dive log) report of July 2012, the team lead was Ola Lindh, Project Leader and Diver. Åke Larsson, another diver, contributed the following information about that dive.

The Hydrox divers used open circuit scuba, with back mounted air, and for decompression, bottles of hydrox and oxygen.

The Swedish divers did not go deeper than 131 feet because they were just above the mud at that depth in a quarry. Plus, they did not yet have details of Zetterström’s decompression plan for deeper diving.

Today, they do possess the wartime hydrogen decompression plan, so deeper hydrogen dives may be forthcoming.

Three gas mixtures – hydrogen, and air (nitrogen and oxygen)

When you mix an inert gas like nitrogen (or perhaps helium?) with hydrogen and oxygen mixtures, that greatly reduces the explosion hazard. But as this video shows, sooner or later the ratios might change enough to become explosive.

Naval Medical Research Institute

I spent 12 years working as a diving biomedical researcher at the Naval Medical Research Institute (NMRI) in Bethesda, MD.

Main entrance to the Albert R. Behnke Diving Medicine Research Center, at NMRI.

My laboratory was in the Behnke Diving Medicine Research Center building, but the hyperbaric hydrogen facility was situated a safe distance behind the main building. In the unlikely event of an explosion, the main Behnke facility and its hyperbaric chamber complex would be preserved.  

The hyperbaric hydrogen facility was used to test the effects of high-pressure hydrogen and biochemical decompression on pigs, rather than risk human divers. And all of that was done safely, thanks to the professionalism of Navy divers and scientists.

Dr. Susan Kayar checking on the hydrogen diving pigs.

Kayar, a member of the Women Divers Hall of Fame, used at 230 msw (751 fsw) a gas mixture of 88% hydrogen, 2% oxygen, balance helium with a slight amount of nitrogen. That 88% hydrogen mixture put the gas mixture well above the 71.3% upper explosion limit for three gas components at 24 bar pressure. The resulting PO2 was 0.5 ata.

Compagnie Maritime d’Expertises (COMEX)

COMEX and their human-rated hyperbaric chambers are located in Marseilles, France.

When it came to manned hydrogen diving, the effect of hydrogen narcosis forced COMEX to operate below the upper explosion limit during its long series of experimental hydrogen dives.

In 1985, COMEX’s Hydra V was the first manned hydrogen dive to 450 msw. Hydrogen fraction was 54%, helium fraction was 45%, and oxygen fraction 1%. PO2 was a nominal 0.45 atm, the same partial pressure used by the U.S. Navy for saturation dives.

In 1988 during Hydra VIII, the first open water hydrogen dive, the depth was 534 msw, or 1752 fsw. Hydrogen fraction was 49%, helium fraction was 50%, and oxygen fraction 1%. The resulting oxygen partial pressure was 0.54 atmospheres.

The following video documents the record-breaking Hydra VIII dive.

The 534 msw Hydra VIII depth record was broken by Hydra X, a 701 msw, 2300 fsw chamber dive. The gas mixture was the same as in Hydra VIII, hydrogen fraction 49%, helium 50%, and oxygen percentage 1%. Due to the increase in depth, PO2 rose to 0.7 atm, an oxygen partial pressure frequently used in older U.S. Navy rebreathers.

The head of the Diving Medicine Department at NMRI, CAPT Ed Flynn, M.D. (glasses and grey hair sitting on the right side of the console), was performing physiological studies on both Hydra VI and VIII. In essence he was the Patron Saint of the NMRI Hydrogen Research Facility.

Shallow Hydrogen Diving

What have the previous studies taught us? Well, for one thing, the Swedes showed in their Arne Zetterström Memorial dive that you can get away with oxygen concentrations close to normoxia, PO2~0.21 ata. The disadvantage of normal atmospheric partial pressures of oxygen, compared to higher pressures, is related to decompression time. There is a decompression advantage when breathing oxygen pressures of 1.3 to 1.45 ata. Virtually all modern electronic rebreathers use those oxygen pressures for that reason. But as the KTH Dive Club showed, hydrogen decompression can be safely handled at relatively shallow depths.

For recreational divers, there is an economic advantage for reducing helium usage by substituting nitrogen. We don’t yet know what the economic and safety comparison would be when using helium diluted hydrogen versus pure hydrogen.

Hydrogen, helium, and oxygen were the standard gases used by COMEX. But they were likely chosen to lessen hydrogen toxicity. Hydrogen toxicity would not be a problem at shallow depth. And in fact, the KTH Dive Club reported no toxicity problems.

Retrospection

As proud as I have been of the record-breaking COMEX hydrogen research program, and of the highly imaginative U.S. Navy hydrogen research program, it has not been lost on me that the first deep human hydrogen dives were conducted by an undoubtedly low-cost program led by a single Swedish Naval Officer, Arne Zetterström.

Now, I find it remarkable that the people testing hydrogen diving at relatively shallow depths, would also be Swedish. Unlike the COMEX and NMRI projects described above, I suspect the KTH Dive club was not sponsored by multimillion dollar programs.

You have to admire the Swedish chutzpah.

Disclaimer: The author is no longer employed by the Navy or Department of Defense. All opinions are my own, and not those of any government agency. This document is posted purely for historical and educational interest. At risk of violent death, under no circumstances should the reader be tempted to explore the production, storage, or use of hydrogen without thorough and certified safety training.

Hydrogen Diving – A Very Good Year for Fiction

Susan R. Kayar

It is incredibly unlikely that two scientist colleagues, Susan Kayar and myself, separated by large amounts of time and distance, would independently publish two novels about deep hydrogen saturation diving, in the same year. Unlikely or not, it happened in 2017. Neither author was aware of the other’s intentions, or even their whereabouts.

Some things are inexplicable.

Hydrogen diving is, to use an over-used analogy, a double edged sword. On the one hand it makes truly deep diving possible, yet it can cause bizarre mental effects on some deep hydrogen divers. And that dichotomy is grist for any novelist’s mill.

I had previously written  about hydrogen diving and the pioneering role a Swede named Arne Zetterström had in developing it. Unfortunately, perhaps because he was a bold diver, he did not survive to become an old diver. Ironically, his death while diving wasn’t the fault of the hydrogen, but of his inattentive tenders. But as they say, that’s another story.

Once the remarkable, serendipitous co-publication of these two hydrogen diving novels became known, Kayar and I decided to post reviews, each about the other’s book. After all, if we didn’t, no one else would.

Quoting from Dr. Kayar’s biography listed on her Goodreads site, “Susan R. Kayar holds a doctorate in biology from the University of Miami. Her research career in comparative respiratory physiology spanned more than twenty years. She was the head of a research project in hydrogen diving and hydrogen biochemical decompression in animal models at the Naval Medical Research Institute, Bethesda, Maryland. She currently resides in Santa Fe, New Mexico, with her husband Erich; they met when they were both performing research at NMRI. Dr. Kayar was inducted into the Women Divers Hall of Fame in 2001 for her contributions to the study of diving physiology and decompression sickness.”

As for me, my bio is included in the About page of this blog.

My review of her book, Operation SECOND STARFISH: A Tale of Submarine Rescue, Science, and Friendship, is repeated here, and her review of mine is at the bottom of this post.

“Submarine deep sea “black ops” can be risky business even when everything goes well. But when things go badly, submariners’ lives are in peril, and everyone is praying for a miracle, and a savior. This well written novel drops you into the middle of such a desperate situation, and the potential savior, or potential scapegoat, is an unexpected protagonist, a female civilian scientist who knows the Navy way, knows how to motivate Navy divers, and unconsciously toys with their affections. This is a sensitively written account with a focus as much on interpersonal relations as on the technical aspects of hydrogen diving and biological decompression, or “Biodec.” Some of the greatest themes in this story are of the personal heroism of divers willing to risk their lives in the cold, foreboding darkness of the deep sea in an improbable effort to save fellow sailors.

The story may be fictional, but the science is not. In fact, for all the reader knows, everything written could have happened, or perhaps will, the next time the Navy has a submarine stranded on the bottom. The author, Susan Kayar, Ph.D. has pursued with Navy funding the very technology exposed in this story.

Amazingly, this is one of two novels published independently by scientists in the same year concerning record breaking deep hydrogen dives conducted on super-secret national security missions. That is a rare coincidence indeed, since to my knowledge no other novels about deep hydrogen diving have ever been written.

The other book is a sci fi techno-thriller called Triangle: A Novel, the second volume of a trilogy published by one of Kayar’s fellow scientists and colleagues, this reviewer. In both books, the hazards of deep diving are very real, and the tension is palpable. If you want to learn of the possibilities and perils of deep hydrogen diving, and experience the heroism of exceptional men and women in extraordinary circumstances, you now have two books to both entertain and painlessly inform you.

Kayar’s book will leave you wishing you could ride along with Doc Stella as she rides off into the sunset on her Indian motorcycle. What a ride it is.”

 


Kayar’s review of my novel, Triangle, the second in the Jason Parker Series of science fiction thrillers, follows.

“I thoroughly enjoyed Triangle, the second novel in the Jason Parker Trilogy by John Clarke. It is a fun and engaging mash-up of diving science and science fiction. John and I worked together in diving research for the Navy in Maryland years ago. He continues to this day to perform diving research for the Navy in Florida (while I moved on to other activities and then retired). As one would expect, his details in diving science and Navy jargon are impeccable. But it is impressive that his characters are well drawn and his plot twists are creative and bold.

My favorite part of Triangle has to be the ultra-deep hydrogen dive sequence for admittedly personal reasons. John and I, friendly colleagues though we were, had not been in contact with each other for a couple of decades or more. And yet my own diving novel, Operation SECOND STARFISH, was published in the same year as Triangle, and also contains an ultra-deep hydrogen dive sequence. Mutual friends had to tell us that the other had published a book for us to re-establish contact. I would imagine that our two books are the only novels ever to describe a hydrogen dive, which is a huge technical and physiological challenge, as readers will discover. John’s hydrogen dive works out (if I dare say so without revealing too much of his excellent plot) about as well as such a dangerous scenario ever will. My hydrogen dive is a lot rougher, in keeping with the more aggressive compression rate chosen to respond to the disabled submarine rescue that forms the basis of my story.

Any readers truly interested in dives well beyond 1000 feet of seawater will find a lot to learn and marvel over in Triangle. Readers just along for the exciting sci-fi ride will be equally happy to have spent time in John Clarke’s imaginative world. I look forward to his predicted December release of the third novel in this series.”

 


Anyway you look at it, these two fun novels contain a cram course in the rarest type of diving there is, diving with hydrogen as a breathing gas.

 

Authorized for Cold Water Service: What Divers Should Know About Extreme Cold

The following is reprinted from my article published in ECO Magazine, March 2015.  It was published in its current format as an ECO Editorial Focus by TSC Media. Thank-you Mr. Greg Leatherman for making it available for reprinting.ECO Magazine

It is the highpoint of your career as an environmentally minded marine biologist. The National Science Foundation has provided a generous grant for your photographic mission to the waters 100 ft below the Ross Ice Shelf, Antarctica. Now you’re on an important mission, searching for biological markers of climate change.

Picture1
Under Antarctic Ice, photo by Dr. Martin Sayer.

Above you lies nothing but a seemingly endless ceiling of impenetrable ice, 10 ft thick. Having spent the last several minutes concentrating on your photography, you look up and notice you’ve strayed further from safety than you’d wanted. The strobe light marking the hole drilled in the ice where you’ll exit the freezing water is a long swim away. And, unfortunately, your fellow scientist “buddy” diver has slipped off somewhere behind you, intent on her own research needs.

You’re diving SCUBA with two independent SCUBA regulators, but in the frigid cold of the literally icy waters, you know that ice could be accumulating within the regulator in your mouth. At the same time, a small tornado of sub-zero air expands chaotically within the high-pressure regulator attached to the single SCUBA bottle on your back—and that icy torrent is increasingly sucking the safety margins right out of your regulator. You are powerless to realize this danger or to do anything about it.

At any moment, your regulator could suddenly and unexpectedly free flow, tumultuously dumping the precious and highly limited supply of gas contained in the aluminum pressure cylinder on your back. You’re equipped and trained in the emergency procedure of shutting off the offending regulator and switching to your backup regulator, but this could also fail. It’s happened before. 

As you try to determine your buddy’s position, you’re feeling very lonely. You realize the high point of your career could rapidly become the low point of your career—and an end to your very being. Picture046

The preceding is not merely a writer’s dramatization. It is real, and the situation could prove deadly—as it has in far less interesting and auspicious locations. Regulator free flow and limited gas supplies famously claimed three professional divers’ lives in one location within a span of one month.

There is a risk to diving in extreme environments. However, the U.S. Navy has found that the risk is poorly understood, even by themselves—the professionals. If you check the Internet SCUBA boards, you constantly come across divers asking for opinions about cold-watersafe regulators. Undoubtedly, recent fatalities have made amateur divers a little nervous—and for good reason.

Internet bulletin boards are not the place to get accurate information about life support safety in frigid water. Unfortunately, the Navy found that manufacturers are also an unreliable source. Of course, the manufacturers want to be fully informed and to protect their customers, but the fact remains that manufacturers test to a European cold-water standard, EN 250. By passing those tests, manufacturers receive a “CE” stamp that is pressed into the hard metal of the regulator. That stamp means the regulator has received European approval for coldwater service.

As a number of manufacturers have expensively learned, passing the EN 250 testing standard is not the same as passing the more rigorous U.S. Navy standard, which was recently revised, making it even more rigorous by using higher gas supply pressures and testing in fresh as well as salt water. Freshwater diving in the Navy is rare—but depending on the brand and model of regulator in use, it can prove lethal.

The unadorned truth is that the large majority of manufacturers do not know how to make a consistently good Performing cold-water regulator. Perhaps the reason is because the type of equipment required to test to the U.S. Navy standard is very expensive and has, not to date, been legislated. Simply, it is not a requirement.

Some manufacturers are their own worst enemy; they cannot resist tinkering with even their most successful and rugged products. This writer is speculating here, but the constant manufacturing changes appear to be driven by either market pressures (bringing out something “new” to the trade show floor) or due to manufacturing economy (i.e., cost savings). The situation is so bad that even regulators that once passed U.S. Navy scrutiny are in some cases being changed almost as soon as they reach the “Authorized for Military Use” list. The military is struggling to keep up with the constant flux in the market place, which puts the civilian diver in a very difficult position. How can they—or you—know what gear to take on an environmentally extreme dive?

My advice to my family, almost all of whom are divers, is to watch what the Navy is putting on their authorized for cold-water service list. The regulators that show up on that list (and they are small in number) have passed the most rigorous testing in the world.

Through hundreds of hours of testing, in the most extreme conditions possible, the Navy has learned what all SCUBA divers should know:

• Even the coldest water (28°F; -2°C) is warm compared to the temperature of expanding air coming from a first stage regulator to the diver. There is a law of physics that says when compressed air contained in a SCUBA bottle is expanded by reducing it to a lower pressure, air temperature drops considerably. It’s the thermal consequence of adiabatic (rapid) expansion.

• Gas expansion does not have to be adiabatic. Isothermal (no temperature change) expansion is a process where the expansion is slow enough and heat entry into the gas from an outside source is fast enough that the expanded gas temperature does not drop.

• The best regulators are designed to take advantage of the heat available in ice water. The most critical place for that to happen is in the first stage where the greatest pressure drop occurs (from say 3,000 psi or higher to 135 psi above ambient water pressure (i.e., depth). They do that by maximizing heat transfer into the internals of the regulator.

• First stage regulators fail in two ways. The most common is that the first stage (which controls the largest pressure drop) begins to lose control of the pressure being supplied to the second stage regulator, the part that goes into a diver’s mouth. As that pressure climbs, the second stage eventually can’t hold it back any longer and a free flow ensues.

• The second failure mode is rare, but extremely problematic. Gas flow may stop suddenly and completely, so that backup regulator had better be handy.

• Second stage regulators are the most likely SCUBA components to fail in cold water due to internal ice accumulation.

• Free flows may start with a trickle, slowly accelerating to a torrent, or the regulator may instantly and unexpectedly erupt like a geyser of air. Once the uncontrolled, and often unstoppable free flow starts, it is self-perpetuating and can dump an entire cylinder of air within a few minutes through the second stage regulator.

• A warm-water regulator free flow is typically breathable; getting the air you need to ascend or to correct the problem is not difficult. In a cold-water-induced free flow, the geyser may be so cold as to make you feel like you’re breathing liquid nitrogen and so forceful as to be a safety concern. Staying relaxed under those conditions is difficult, but necessary.

• Water in non-polar regions can easily range between and 34°F to 38°F; at those temperatures, gas entering the second stage regulator can be at sub-freezing temperatures. European standard organizations classify ~10°C (50°F) as the cold/non-cold boundary. The Navy has found in the modern, high-flow regulators tested to date that 42°F is the water temperature where second stage inlet temperature is unlikely to dip below freezing.

• The small heat exchangers most manufacturers place just upstream of the second stage is ineffective In extreme conditions. They quickly ice over, insulating that portion of the regulator from the relative warmth of the surrounding water. Heat Ex Regulator

• Regulator “bells and whistles” are an unknown and can be problematic. Second stage regulators with multiple adjustments can do unpredictable things to heat transfer as the diver manipulates his controls. The last thing a cold-water diver should want is to make it easier to get more gas. High gas flows mean higher temperature drops and greater risk of free flow.

• Only manufacturer-certified technicians should touch your regulator if you’re going into risky waters. The technician at your local dive shop may or may not have current and valid technician training on your particular life support system. Don’t bet your life on it— ask to see the paperwork.

• Follow Navy and Smithsonian* guidance on handling and rinsing procedures for regulators in frigid waters. A single breath taken above the surface could freeze a regulator before you get your first breath underwater.

U. S. Navy reports on tested regulators are restricted. However, the list of those regulators passing all phases of Navy testing is available online. If your regulator, in the exact model as tested, is not on that list, do yourself a favor and don’t dive in frigid waters.

 

Separator small

The original Editorial Focus article is found in the digital version of the March ECO magazine here, on pages 20-25.

 

After the Heart Attack – The Healing Power of Athletic Passions

DSC06084-B2There is nothing quite like a heart attack and triple bypass surgery to get your attention.

Even if you’ve been good, don’t smoke, don’t eat to excess, and get a little exercise, it may not be enough to keep a heart attack from interrupting your life style, and maybe even your life.

Post-surgical recovery can be slow and painful, but if you have an avocational passion, that passion can be motivational during the recovery period after a heart attack. There is something about the burning desire to return to diving, flying, or golfing to force you out of the house to tone your muscles and get the blood flowing again.

My return to the path of my passions, diving and flying, began with diet and exercise. My loving spouse suggested a diet of twigs and leaves, so it seemed. I can best compare it to the diet that those seeking to aspire to a perpetual state of Buddha-hood, use to prepare themselves for their spiritual end-stage: it’s a state that looks a lot like self-mummification. Apparently those fellows end up either very spiritual or very dead, but I’m not really sure how one can tell the difference.

The exercise routine began slowly and carefully: walking slowly down the street carrying a red heart-shaped pillow (made by little lady volunteers in the local area just for us heart surgery patients). The idea, apparently, is that if you felt that at any point during your slow walk your heart was threatening to extract itself from your freshly opened chest, or to extrude itself like an amoeba between the stainless steel sutures holding the two halves of your rib cage together, that pillow would save you. You simply press it with all the strength your weakened body has to offer against the failing portion of your violated chest, and that pressure would keep your heart, somehow, magically, in its proper anatomical location.

I am skeptical about that method of medical intervention, but fortunately I never had occasion to use it for its avowed purpose.

Eventually I felt confident enough to ditch the pillow and pick up the pace of my walks. In fact, I soon found I could run again, in short spurts. It was those short runs that scared the daylight out of my wife, but brought me an immense amount of pleasure.  It meant that I might be able to regain my flying and diving qualifications.

Three months later I was in the high Arctic with good exercise capability, and most importantly the ability to sprint, just in case the local polar bears became too aggressive on my nighttime walks back from the only Ny-Alesund pub.

Stress_test
Stress test, Public Domain, from Wikimedia Commons.

After that teaching adventure, I prepared myself for the grinder that the FAA was about to put me through: a stress test. Not just any stress test mind you, but a nuclear stress test where you get on a treadmill and let nurses punish your body for a seeming eternity. Now, these nurses are as kindly as can be, but they might well be the last people you see on this Earth since there is a small risk of inducing yet another heart attack during the stress test. Every few minutes the slope and speed of the treadmill is increased, and when you think you can barely survive for another minute, they inject the radioisotope (technetium 99m).

With luck, you would have guessed correctly and you are able to push yourself for another long 60-seconds. I’m not sure exactly what would happen if you guess incorrectly, but I’m sure it’s not a good thing.

And then they give you a chance to lie down, perfectly still, while a moving radioisotope scanner searches your body for gamma rays, indicating where your isotope-laden blood is flowing. With luck, the black hole that indicates dead portions of the heart will be small enough to be ignored by certifying medical authorities. (An interesting side effect of the nuclear stress test is that you are radioactive for a while, which in my case caused a fair amount of excitement at large airports. But that’s another story.)

The reward for all the time and effort spent on the fabled road to recovery, is when you receive, in my case at least, the piece of paper from the FAA certifying that you are cleared to once again fly airplanes and carry passengers. With that paper, and having endured the test of a life-time, I knew that I’d pass most any diving physical.

IMG_0645 (2014_06_22 07_00_11 UTC)
Vortex Springs, 2010

Having been in a situation where nature dealt me a low blow and put my life at risk and, perhaps more importantly, deprived me of the activities that brought joy to my life, it was immensely satisfying to be able to once again cruise above the clouds on my own, or to blow bubbles with the fish, in their environment. Is there anything more precious that being able to do something joyful that had once been denied?

DIGITAL CAMERA
A goofy looking but very happy diver sharing a dive with his Granddaughter, July 2014.

 

 

 

 

 

 

 

 

 

 

Separator small

Without a doubt, the reason I was able to resume my passions was because I happened to do, as the physicians said, “all the right things” when I first suspected something unusual was happening in my chest. The symptoms were not incapacitating so I considered driving myself to the hospital. But after feeling not quite right while brushing my teeth, I lay down and called 911. The ambulance came, did an EKG/ECG, and called in the MI (myocardial infarction) based on the EKG. The Emergency room was waiting for me, and even though it was New Years’ eve, they immediately called in the cardiac catheterization team. When the incapacitating event did later occur I was already in cardiac ICU and the team was able to act within a minute to correct the worsening situation.

Had I dismissed the initial subtle symptoms and not gone to the hospital, I would not have survived the sudden onset secondary cardiac event.

The lesson is, when things seem “not quite right” with your body, do not hesitate. Call an ambulance immediately and let the medical professionals sort out what is happening. That will maximize your chances for a full and rapid recovery, and increase the odds of your maintaining your quality of life.

It will also make you appreciate that quality of life more than you had before. I guarantee it.

Does Your Rebreather Scrubber Operate in Its Goldilocks Zone?

gliese581d
Exoplanet Gliese 581d, orbiting the red-dwarf star Gliese 581, only 20 light-years away. (The existence of this planet is currently in dispute.)

In space, there is a so-called Goldilocks zone for exoplanet habitability. Too close to a star, and the planet is too hot for life. Too far from its star, and the planet is too cold for life, at least as we understand biological life, life dependent on water remaining in a liquid state. Earth is clearly in the Goldilocks zone, and so is a purported planet Gleise 581d, from another solar system.

Carbon dioxide absorbing “scrubber” canisters in rebreathers have similar requirements for sustaining their absorption reactions. If it’s too hot, the water necessary for the absorption reaction is driven off. Too cold and the water cannot fully participate in the absorption reactions.

Those with some knowledge of chemistry recognize that cold retards chemical reactions and heat accelerates them. But that does not necessarily apply to reactions where a critical amount of water is required. Water thus becomes the critical link to the reaction process, and so maintaining scrubber temperature within a relatively narrow “Goldilocks” zone is important, just as it is for life on distant planets.

Temperature within a scrubber canister is a balance of competing factors. Heat is produced by the absorption of CO2 and it’s conversion from gas to solid phase, specifically calcium carbonate. A canister is roughly 20°C or more warmer than the surrounding inlet gas temperature due to the heat-generating (exothermic) chemical reactions occurring within it.

Heat is lost from a warm canister through two heat transfer processes; conduction and convection. Conduction is the flow of heat through materials, from hot to cold. Hot sodalime granules have their heat conducted to adjacent cooler granules, and when encountering the warm walls of the canister, heat passes through the canister walls, and on to the surrounding cold water.

You can think of this conduction as water flowing downhill, down a gravity gradient. But in this case, the downhill is a temperature gradient, from hot to cold. If the outside of the canister was hotter than the inside, heat would flow in the opposite direction, into the canister.

Copper is a better conductor of heat than iron (it has a higher thermal conductivity), explaining why copper skillets are popular for cooking on stoves. Air is a poor conductor of heat, explaining why neoprene rubber wet suits, filled with air bubbles, are good insulators. Air-filled dry suits are an even better insulator.

Capturecan1
Chemical absorption reactions heat an otherwise cold canister (yellow is hot, red is warm, black is cold.) (Copyright John R. Clarke, 2014).

Convection is the transfer of heat to a flowing medium, in this case gas. You experience convective cooling when you’re working hard, generating body heat, and a cool dry breeze passes over your skin. Convective cooling can, under those circumstances, be delightful.

When you walk outside on a cold, windy day, convective cooling can be your worst enemy. Meteorologists call it wind chill.

There is wind chill within a canister, caused by the flow of a diver’s exhaled breath through the canister. In cold water the diver’s exhaled breath leaves the body quite warm, but is chilled to water temperature by the time it reaches the canister. Heat is lost through uninsulated breathing hoses exposed to the surrounding water.

As you might expect, if the canister is hot, that convective wind chill can help cool it. If the canister is cold, then the so-called wind chill will chill it even more.

Capturecan2
Copyright John R. Clarke, 2014.

The amount of heat transferred from a solid object to gas is determined by three primary variables; the flow rate of the gas, the density of the gas, and the gas’s heat capacity. Heat capacity is a measure of the amount of heat required to raise the temperature of a set mass of gas by 1° Celsius.

Both the heat capacity and density  of the gas circulating through a rebreather changes not only with depth (gas density), but with the gas mixture (oxygen plus an inert diluent such as nitrogen or helium).  The heat capacity of nitrogen, helium and oxygen differ, and the ratio of oxygen and inert gas varies with depth to prevent oxygen toxicity. Nitrogen and helium concentrations vary as well,  as the diver attempts to avoid nitrogen narcosis. Capture2

Q is heat transferred by convection, and the terms on the right are, in sequence, diver ventilation rate, gas density, heat capacity of the inspired gas mixture at constant pressure, and the difference in temperature between the absorbent and environmental temperature.

The interaction of all these variables can be complex, but I’ve worked a few examples relevant to rebreather diving. The assumptions are a low work rate: ventilation is 22 liters per minute, water temperature is 50°F (10°C), oxygen partial pressure is 1.3 atmospheres, and dive depths of 100, 200 and 300 feet sea water. The average canister temperature is assumed to be 20°C (68°F) above water temperature, a realistic value found in tests of scrubber canister temperatures by the U.S. Navy.

The heat capacities for mixtures of diving gases come from mixture equations, and for the conditions we’re examining are given in the U.S. Navy Diving Gas Manual. (This seems to be a hard document to obtain.)

At 100 fsw, the heat transfer (Q) for a nitrogen-oxygen (nitrox) gas mixture is 34.2 Watts (W). For a helium-oxygen mixture (heliox), Q is 27.4 W.  At 200 fsw, Q for nitrox is 59.9 W, and for heliox Q is 50.3 W. At 300 fsw, Q for nitrox gas mixture is 85.5 W, and for heliox, is 59.9 W.

Interestingly, the heat transferred from the absorbent bed to the circulating gas is the same at 300 fsw with heliox as it is at 200 fsw with nitrox.

Picture1
Photo courtesy of David L. Conlin, Ph.D., Chief – National Parks Service Submerged Resources Center. Photo by Brett Seymour, NPS.

Dr. Jolie Bookspan briefly mentioned the fact that helium removes less heat from a diver’s airways than does air in her short article on “The 36 Most Common Myths of Diving Physiology” (see myth no. 20). Conveniently, heat exchange equations apply just as well to inanimate objects like scrubber canisters as they do to the human respiratory system.

From these types of heat transfer calculations it is easy to see that for a given depth, work rate and oxygen set point, it is better to use a heliox mixture than a nitrox mixture if you’re in cold water. That may sound counterintuitive considering helium’s high thermal conductivity, but the simple fact is, the helium background gas with its low density carries away less heat from the canister, and thereby keeps the canister warmer, than a nitrox mixture does. The result is that canister durations are longer in cold water if less heat is carried away.

In warm water, the opposite would be true. Enhanced canister cooling with nitrox would benefit the canister.

An earlier post on the effect of depth on canister durations raised the question of whether depth impedes canister performance. The notion that increased numbers of inert gas molecules block CO2 from reaching granule absorption sites has little chemical kinetic credence. However, changing thermal effects on canisters with depth or changing gas mixtures does indeed affect canister durations.

I’ve just given you yet another reason why helium is a good gas for rebreather diving, at least in cold water. Unfortunately, these general principles have to be reconciled with the specific cooling properties of all the rebreather canisters in current use. In other words, your canister mileage may vary. But it does look like the current simple notions of depth effects are a bit too simplistic.

 

 

 

 

 

How Cold Can Scuba Regulators Become?

The Arctic science diving season is in full swing (late May). Starting in September and October, the Austral spring will reach Antarctica and science diving will resume there as well.

Virtually all polar diving is done by open-circuit diving, usually with the use of scuba. Picture046

As has often been reported, regulator free flow and freeze up is an operational hazard for polar divers. However, even locations in the Great Lakes and Canada, reachable by recreational, police and public safety divers, can reach excruciatingly cold temperatures in both salt and fresh water on the bottom.

Sherwood Fail

Decades ago a reputed Canadian study measured temperatures in a scuba regulator, and found that as long as water temperature was 38° F or above, temperatures within the second stage remained above zero.

Recent measurements made on modern high-flow regulators at the U.S. Navy Experimental Diving Unit show that the thermal picture of cold-water diving is far more complex than was understood from the earlier studies.

NEDU instrumented a Sherwood Maximus regulator first and second stage with fast time response thermistors. The regulators were then submerged in 42°, 38°, and 34° F fresh water, and 29° F salt water, and ventilated at a heavy breathing rate (62.5 liters per minute), simulating a hard working diver.

In the following traces, the white traces are temperatures measured within the first stage regulator after depressurization from bottle pressure to intermediate pressure. That site produces the lowest temperatures due to adiabatic expansion. The red tracing was obtained at the inlet to the second stage regulator. The blue tracing was from a thermistor placed at the outlet of the “barrel” valve within the second stage regulator box. Theoretically, that site is exposed to the lowest temperatures within the second stage due to adiabatic expansion from intermediate pressure to ambient or mouth pressure.

Regulators were dived to 198 ft (60.4 meters) and breathed with warm humidified air for 30-minutes at the 62.5 L/min ventilation rate. The regulator was then brought to the surface at a normal ascent rate.

To make the breathing wave forms more distinct, only one minute of the 30-minute bottom time is shown in the following traces, starting at ten minutes.

The first two tracings were at a water temperature of 42° F. In the first tracing, bottle pressure was 2500 psi, and in the second, bottle pressure was 1500 psi. (For all of these photos, click the photo for a larger view.) 42 2500 SM2

Color code

Color coding of thermistor locations, all internal to the regulator.

42 1500 SM2

 

 

When bottle pressure was reduced from 2500 psi to 1500 psi, all measured temperatures increased. The temperature at the entrance to the second stage oscillated between 0° and  1°C. At 2500 psi that same location had -1 to -2°C temperature readings.

 

 

 

 

 

The next two tracings were taken in 29° F salt water. The coldest temperatures of the test series were in 29° F water with 2500 psi bottle pressure.

29 1500 SM2

29 2500 SM2

 

 

 

 

 

 

 

 

 

As a reminder, 32°F is 0°C,  -22° C is equal to -7.6° F, and -11°C is 12.2°F. At a bottle pressure of 2500 psi, the temperature inside the second stage (blue tracing) never came close to 0° C. So we’re talking serious cold here. No wonder regulators can freeze.

Frozen Reg 1_hide

 

Separator small

This material was presented in condensed form at TekDiveUSA 2014, Miami. (#TekDiveUSA)

 

I Too Landed at the Wrong Airport

As a professional in underwater diving, and an amateur airman, I’ve been thinking a lot lately about the causes of accidents and “near-misses”. If you’re reading this in early 2014, you are no doubt aware of several recent incidents of commercial and military jets landing at the wrong airport. In the latest case there was a potential for massive casualties, but disaster was averted at the last possible moment.

As they say, to err is human. From my own experience, I know the truth of that adage in science, medicine, diving, and the subject of this posting, aviation. Pilot errors catch everyone’s attention because we, the public, know that such errors could personally inconvenience us, or worse. But lesser known are the sometimes subtle factors that cause human error.

I can honestly tell you  exactly what I was doing and thinking that caused errors at the very end of long flights. Those errors, none of which were particularly dangerous or newsworthy, were nonetheless caused by the same elements that have been discovered in numerous fatal accidents. Namely, what I was seeing, was not at all what I thought I was seeing.

N1144Y_300dpicrop
The small but capable Cessna 150B.

Long before the advent of GPS navigation, cell phones and electronic charts,  I was flying myself and an Army friend (we had both been in Army ROTC at Georgia Tech) from Aberdeen Proving Ground, MD to Georgia. I was dropping him off in Atlanta at Peachtree-Dekalb Airport, and then I would fly down to Thomasville in Southwest Georgia where my young wife awaited me.

Since it was February most of the planned six hour flight was at night. We couldn’t take-off until we both got off duty on a Friday.

I had planned the flight meticulously, but I had not counted on the fuel pumps being shut down at our first planned refueling spot. After chatting with some local aviators about the closest source of fuel, we took off on a detour to an airport some thirty miles distant. That unplanned detour was stressful, as I was not entirely sure we’d find fuel when we arrived. Fortunately, we were able to tank up, and continue on our slow journey. We were flying in my 2-seat Cessna 150, and traveling no faster than about 120 mph, so the trip to Atlanta was a fatiguing and dark flight.

As we eventually neared Atlanta, I was reading the blue, yellow and green paper sectional charts under the glow of red light from the overhead cabin lamp. Lights of the Peachtree-Dekalb airport were seemingly close at hand, surrounded by a growing multitude of other city lights. Happy that I was finally reaching Atlanta, I called the tower and got no answer. No matter, it was late, and many towers shut down operations  fairly early, about 10 PM or so. So I announced my position and intentions, and landed.

The runway was in the orientation I had expected, and my approach to landing was just as I had planned. However, as I taxied off the runway, I realized the runway environment was not as complex as it should have been. We taxied back and forth for awhile trying to sort things out, before I realized I’d landed 18 nautical miles short of my planned destination.

Capture
My unplanned refueling stop in South Carolina placed me far enough off course to take me directly over an airport that looked at night like my destination, Peachtree-Dekalb, Atlanta. (Solid line: original course, dashed line: altered course.)

I had so much wanted that airport to be PDK, but in my weariness I had missed the signs that it was not. I had landed at Gwinnett County Airport, not Peachtree-Dekalb.

No harm was done, but my flight to Thomasville was seriously delayed by the two extra airport stops. It was after 1 AM before I was safe at the Thomasville, GA airport, calling my worried wife to pick me up.

She was not a happy young wife.

A few years later, I added an instrument ticket to  my aviation credentials, and thought that the folly of my youth was far behind me. Now, advance quite a few decades, to a well-equipped, modern cross-country traveling machine, a Piper Arrow with redundant GPS navigation and on-board weather. I often fly in weather, and confidently descend through clouds to a waiting runway. So what could go wrong?

DSC_4168-Edit
Piper Arrow 200B at home in Panama City, Fl.

Wrong no. 2 happened when approaching Baltimore-Washington International airport after flying with passengers from the Florida Panhandle. Air Traffic Control was keeping me pretty far from the field as we circled Baltimore to approach from the west. I had my instrumentation set-up for an approach to the assigned runway, but after I saw a runway, big and bold in the distance, I was cleared to land, and no longer relied on the GPS as I turned final.

As luck would have it, just a minute before that final turn we saw President George W. Bush and his decoy helicopters flying in loose formation off our port side. I might have been a little distracted.

In the city haze it had been hard to see the smaller runway pointing in the same direction as the main runway. So I was lining up with the easy-to-see large runway, almost a mile away from where I should have been. It was the same airport of course, but the wrong parallel runway.

I was no doubt tired, and somewhat hurried by the high traffic flow coming into a major hub for Baltimore and Washington. Having seen what I wanted to see, a large runway pointed in the correct direction, I assumed it was the right one, and stopped referring to the GPS and ILS (Instrument Landing System) navigation which would have revealed my error.

The tower controller had apparently seen that error many times before and gently nudged me verbally back on course. The flight path was easily corrected and no harm done. But I had proven to myself once again that at the end of a long trip, you tend to see what you want to see.

Several years later I had been slogging through lots of cloud en-route to Dayton, Ohio. I had meetings to attend at Wright Patterson Air Force base. It was again a long flight, but I was relaxed and enjoying the scenery as I navigated with confidence via redundant GPS (three systems operating at the same time).

As I was approaching Dayton, Dayton Approach was vectoring me toward the field. They did a great job I thought as they set me up perfectly for the left downwind at the landing airport. But then I became a bit perturbed that they had vectored me almost on top of the airport and then apparently forgotten about me. So I let them know that I had the airport very much in sight. They switched me to tower, and I was given clearance to land.

As I began descending for a more normal pattern altitude, the Dayton Tower called and said I seemed to be maneuvering for the wrong airport. In fact, I was on top of Wright Patterson Airbase, not Dayton International.

Rats! Not again.

Dayton airports
Wish my electronic Foreflight chart on my iPad had these sorts of markings.

Well, the field was certainly large enough, but once again I had locked eyes on what seemed to be the landing destination, and in fact was being directed there by the authority of the airways, Air Traffic Control (ATC). And so I was convinced during a busy phase of flight that I was doing what I should have been doing, flying visually with great care and attention. However, I was so busy that my mind had tunnel vision. I had once again not double checked the GPS navigator to see that I was being vectored to a large landmark which happened to lie on the circuitous path to the landing airport. (I wish they’d told me that, but detailed explanations are rarely given over busy airwaves.)

Oddly enough, if I had been in the clouds making an instrument approach, these mind-bending errors could not have happened. But when flight conditions are visual, the mind can easily pick a target that meets many of the correct criteria like direction and proximity, and then fill in the blanks with what it expects to see. In other words, it is easy in the visual environment to focus with laser beam precision on the wrong target. With all the situational awareness tools at my disposal, they were of no use once my brain made the transition outside the cockpit.

To be fair, distracting your gaze from the outside world to check internal navigation once you’re in a critical visual phase of approach and landing can be dangerous. That’s why it’s good to have more than one pilot in the cockpit. But my cockpit crew that day was me, myself and I; in that respect I was handicapped.

Apparently, even multiple crew members in military and commercial airliners are occasionally lulled into the same trap. At least that’s what the newspaper headlines say.

My failings are in some ways eerily similar to reports from military and commercial incidents. Contributing factors in the above incidents are darkness, fatigue, and distraction. When all three of these factors are combined, the last factor that can cause the entire house of cards, and airplane, to come tumbling down, is the brain’s ability to morph reality into an image which the mind expects to see. Our ability to discern truth from fiction is not all that clear when encountering new and unexpected events and environments.

The saving grace that aviation has going for it is generally reliable communication. ATC saved me from major embarrassment on two of these three occasions.

I only wish that diving had as reliable a means for detecting and avoiding errors.

 

 

 

 

 

 

 

 

 

 

 

The Aesthetics of Flying in Clouds

When it comes to vocations and avocations, I know of none more aesthetically pleasing than flying and diving. I’m sure there are many others, but I simply don’t know them.

My vocation is diving, and flying is my avocation. I also know commercial pilots who dive in caves simply for the joy of diving. Those two activities, flying and diving, are fairly similar, as I’ve noted before.

There are experiences in flying and diving that make them more than enjoyable. They are actually breathtaking, when one takes the time to appreciate them.

For me, the breath taking part is flying into and out of clouds; what is called instrument flying. It’s called that because when you’re in clouds you can’t see the horizon, and you can’t trust bodily sensations, so you are entirely dependent upon your aircraft instruments to make sure you, your passengers, and the aircraft, do not come to harm.

Granted, there are times during an instrument flight when you see absolutely nothing outside the aircraft. Some have compared it to flying inside a milk bottle, which is in my opinion an apt analogy. If it happens to be smooth flight, then there is no sensation of flight at all. The electronic equipment counts down the miles, but as far as you can tell you are in aerial limbo, seemingly suspended in time and space, encroaching on the edges of the twilight zone. 

But when you eventually break out of those clouds, you instantaneously switch from sensory deprivation to sensory overload. The view can be spectacular. 

DSCN8042

When I was an instrument student, long before GPS navigation, instrument flying was hard work, especially when training. It still is in many ways, but technology has made flight in the clouds more precise, and frankly easier over all than it used to be.

But in the clouds a pilot is still too busy “aviating, navigating, and communicating”, to catch more than a brief glance outside, to enjoy the ever shifting textures of white clouds, blue sky and a multitude of grays in between. Occasionally you spy greens and browns of the ground, seen fleetingly through breaks in the cloud cover.

It is a grand theater in the sky not visible from the ground. For that reason, it is special, and to be seen in that moment and that place by no one else in the world except you and your passengers.

The video below gives a sample of such variable flows of scenery, with visibility ranging from zero to miles. The entire flight looped around my home airport in Panama City, FL, as I was radar vectored along a large rectangle, eventually joining a course bringing the aircraft back to a straight-in approach for landing.

This particular flight was a currentcy flight, so the departure and approach to landing was repeated several times. The video, however, ends just after I set up the navigation devices for the next approach. (I suggest you watch the video full screen at the highest resolution possible – 1440p HD.)

The only way I can hope to describe the beauty of such a flight is through the music which accompanies it. The quietness, the excitement, is all there. And from one who has experienced all those emotions during the flight, I can attest to the relevance of that music.

 

 

 

 

 

The Sojourner’s Dilemma; You Have to Go Home Sometime

There are sports, there are professions, then there are sojourns.

Astronauts are sojourners, as are pilots and mountain climbers and underwater divers. While the sojourner may have carefully planned his sojourn, warding off potential trouble by using good equipment and training, it is the return to normalcy that oftentimes presents the greatest and most unexpected danger.

Mckinley
Mt. McKinley, or Denali.

Mountain climbers who reach the top of their mountain, don’t always make it safely back down. Astronauts reentering the atmosphere understand the risk of return all too well.

For scuba divers, return to the surface can be accompanied by decompression sickness and air embolism. When diving in cold water, the very act of rising towards the surface can induce a scuba regulator to free flow, spilling a precious gas supply.

For pilots the sojourn can end badly on landing. This fact has been in the news lately, where seemingly inexplicable crashes occurred in large transport aircraft. I shake my head and wonder why, knowing full well that once you take a sojourn for granted, it can devour you. I also know full well that I am not immune.

I was recently reminded of that during a short 34-mile flight returning a retractable gear aircraft from maintenance back to my home base, Panama City, FL. Most pilots know that, ironically, aircraft maintenance can be risky. While maintenance on diving equipment or airplanes is certainly a critical part of safe operation, at the same time it is an opportunity for a mechanic to inadvertently damage a critical component.

Snapshot gear light
Gear lights: one light is not glowing.

I have seen a maintenance-related failure of a scuba regulator, and I was about to see it with my aircraft as I followed a business jet towards a landing at our local airport. To keep traffic flowing smoothly I kept my speed up on approach until close to the runway. When I finally slowed enough to drop the landing gear I saw two green “gear safe” lights rather than the expected three. My main gear seemed to be down and locked, but the nose wheel lock indication was not glowing that reassuring green.

“Tower, I have a problem with my gear. I need to leave the area and sort out the problem.”

I left the airport airspace and spent a full hour burning fuel, running through all emergency checklist items, pulling G’s to help the gear lock down and waiting for a Southwest Airlines flight to arrive. The local airport, which receives quite a bit of commercial jet traffic (Delta and Southwest) only has one runway. If my gear collapsed on touch-down, that single runway would have been shut down for an hour or more, and arriving flights would have to land elsewhere. There are not a lot of good alternate airports near Panama City.

The sun was getting low, and I did not want to make that landing at night. Besides, my wife was below, waiting anxiously for whatever was going to happen. She was due to pick me up at the hangar, but she and I both knew the aircraft might not make it far past the touchdown point on the runway.

After flying past the tower twice and having them inspect the gear with binoculars, the tower controller said the gear looked down, but I knew there was no way to tell if it was down and locked. If the nose gear was not locked, it would collapse on landing.

Fortunately I was alone in the cockpit so I could  come to grips with what I was about to do without the distraction of worried passengers. I announced my intentions to land, and on my last circuit of the field I saw the crash rescue truck and fire truck pulling into position along the runway. That was a sight no pilot ever wants to see.

As I turned towards the runway I reviewed the landing checklist one last time, and then I was ready. As I turned final it was time to get it over with. Whatever would happen would happen, and there was nothing more I could do about it.

Approaching the runway and ready to land, my mind was focused on only one thing — making the landing as smooth as possible.

The main wheels squeaked as they touched the concrete, ever so gently, and with steady back pressure on the yoke I kept the nose high, sparing the nose gear as long as possible as the plane slowed.

Capture

When gravity overcame the aerodynamic lift on the nose, the wheel settled to the runway — and  rolled.

My first word to the tower was, “Thank God!”

“Indeed”, they replied. They had been holding their breath as well, as they later told me.

The next day when the mechanics drove in, it only took them five minutes to adjust a tab on the nose gear down-lock switch. Such a simple fix for such a lot of drama.

DSC_4181
The offending nose gear.

Now that I’ve had time to reflect on the incident,  I’ve come to appreciate the valor of the silver-suited firefighters who approached me after the landing, the firefighters who are prepared to thrust themselves into the flames to rescue those whose sojourns have gone awry. I was also appreciative of the calm-voiced air field controller whose only weapon against calamity was the calm tone of his voice.

Calm is a good thing when you’re trying to land a plane with all the tenderness of putting a candle on a birthday cake.