Hydrogen Diving – A Very Good Year for Fiction

Susan R. Kayar

It is incredibly unlikely that two scientist colleagues, Susan Kayar and myself, separated by large amounts of time and distance, would independently publish two novels about deep hydrogen saturation diving, in the same year. Unlikely or not, it happened in 2017. Neither author was aware of the other’s intentions, or even their whereabouts.

Some things are inexplicable.

Hydrogen diving is, to use an over-used analogy, a double edged sword. On the one hand it makes truly deep diving possible, yet it can cause bizarre mental effects on some deep hydrogen divers. And that dichotomy is grist for any novelist’s mill.

I had previously written  about hydrogen diving and the pioneering role a Swede named Arne Zetterström had in developing it. Unfortunately, perhaps because he was a bold diver, he did not survive to become an old diver. Ironically, his death while diving wasn’t the fault of the hydrogen, but of his inattentive tenders. But as they say, that’s another story.

Once the remarkable, serendipitous co-publication of these two hydrogen diving novels became known, Kayar and I decided to post reviews, each about the other’s book. After all, if we didn’t, no one else would.

Quoting from Dr. Kayar’s biography listed on her Goodreads site, “Susan R. Kayar holds a doctorate in biology from the University of Miami. Her research career in comparative respiratory physiology spanned more than twenty years. She was the head of a research project in hydrogen diving and hydrogen biochemical decompression in animal models at the Naval Medical Research Institute, Bethesda, Maryland. She currently resides in Santa Fe, New Mexico, with her husband Erich; they met when they were both performing research at NMRI. Dr. Kayar was inducted into the Women Divers Hall of Fame in 2001 for her contributions to the study of diving physiology and decompression sickness.”

As for me, my bio is included in the About page of this blog.

My review of her book, Operation SECOND STARFISH: A Tale of Submarine Rescue, Science, and Friendship, is repeated here, and her review of mine is at the bottom of this post.

“Submarine deep sea “black ops” can be risky business even when everything goes well. But when things go badly, submariners’ lives are in peril, and everyone is praying for a miracle, and a savior. This well written novel drops you into the middle of such a desperate situation, and the potential savior, or potential scapegoat, is an unexpected protagonist, a female civilian scientist who knows the Navy way, knows how to motivate Navy divers, and unconsciously toys with their affections. This is a sensitively written account with a focus as much on interpersonal relations as on the technical aspects of hydrogen diving and biological decompression, or “Biodec.” Some of the greatest themes in this story are of the personal heroism of divers willing to risk their lives in the cold, foreboding darkness of the deep sea in an improbable effort to save fellow sailors.

The story may be fictional, but the science is not. In fact, for all the reader knows, everything written could have happened, or perhaps will, the next time the Navy has a submarine stranded on the bottom. The author, Susan Kayar, Ph.D. has pursued with Navy funding the very technology exposed in this story.

Amazingly, this is one of two novels published independently by scientists in the same year concerning record breaking deep hydrogen dives conducted on super-secret national security missions. That is a rare coincidence indeed, since to my knowledge no other novels about deep hydrogen diving have ever been written.

The other book is a sci fi techno-thriller called Triangle: A Novel, the second volume of a trilogy published by one of Kayar’s fellow scientists and colleagues, this reviewer. In both books, the hazards of deep diving are very real, and the tension is palpable. If you want to learn of the possibilities and perils of deep hydrogen diving, and experience the heroism of exceptional men and women in extraordinary circumstances, you now have two books to both entertain and painlessly inform you.

Kayar’s book will leave you wishing you could ride along with Doc Stella as she rides off into the sunset on her Indian motorcycle. What a ride it is.”

 


Kayar’s review of my novel, Triangle, the second in the Jason Parker Series of science fiction thrillers, follows.

“I thoroughly enjoyed Triangle, the second novel in the Jason Parker Trilogy by John Clarke. It is a fun and engaging mash-up of diving science and science fiction. John and I worked together in diving research for the Navy in Maryland years ago. He continues to this day to perform diving research for the Navy in Florida (while I moved on to other activities and then retired). As one would expect, his details in diving science and Navy jargon are impeccable. But it is impressive that his characters are well drawn and his plot twists are creative and bold.

My favorite part of Triangle has to be the ultra-deep hydrogen dive sequence for admittedly personal reasons. John and I, friendly colleagues though we were, had not been in contact with each other for a couple of decades or more. And yet my own diving novel, Operation SECOND STARFISH, was published in the same year as Triangle, and also contains an ultra-deep hydrogen dive sequence. Mutual friends had to tell us that the other had published a book for us to re-establish contact. I would imagine that our two books are the only novels ever to describe a hydrogen dive, which is a huge technical and physiological challenge, as readers will discover. John’s hydrogen dive works out (if I dare say so without revealing too much of his excellent plot) about as well as such a dangerous scenario ever will. My hydrogen dive is a lot rougher, in keeping with the more aggressive compression rate chosen to respond to the disabled submarine rescue that forms the basis of my story.

Any readers truly interested in dives well beyond 1000 feet of seawater will find a lot to learn and marvel over in Triangle. Readers just along for the exciting sci-fi ride will be equally happy to have spent time in John Clarke’s imaginative world. I look forward to his predicted December release of the third novel in this series.”

 


Anyway you look at it, these two fun novels contain a cram course in the rarest type of diving there is, diving with hydrogen as a breathing gas.

 

Diving with Hydrogen – It’s a Gas

When most people think of hydrogen, they think of the fuel that stars burn in their nuclear fires, the hydrogen bomb, or the Hindenburg disaster. Hydrogen is known for its combustibility and explosiveness. Not many people would think of diving underwater with it.

Technical divers breathe various gas blends, using mixtures of nitrogen, oxygen and even helium. But leave it to the ever inventive Swedes, makers of some of the best diving equipment in the world, to use hydrogen as an experimental diving gas as early as the 1940s.

Hydrogen will not burn under two conditions; if there is too little hydrogen, or too much hydrogen and not enough oxygen. A gas mixture (air or oxygen) with less than 4% hydrogen will not burn, and with more than 94% hydrogen in oxygen (or 75% hydrogen in air), the gas mixture will also not burn. So 100% hydrogen will not burn, unless it leaks out of its container and gets diluted in air. And then if there is an ignition source, woosh, a la Hindenburg.

 

A diver with supposed nitrogen narcosis. Photo credit, Daniel Kwok on flickr.

So why would anyone consider breathing hydrogen? When diving deeper than a few meters, you need a so-called diluent gas to mix with oxygen. Air is a mixture of nitrogen and oxygen, and when compressed, that nitrogen becomes narcotic, leading to nitrogen narcosis, or “rapture of the deep”. When air is compressed it also becomes dense, making it more difficult to breathe than air is at the surface.

Helium, often used by deep diving Navy and technical divers, is less dense than nitrogen and therefore is easier to breathe at depth. Furthermore, it is not narcotic, so no more “rapture of the deep”.

But for seriously deep diving, greater than about 450 msw (~1500 fsw), even a mixture of helium and oxygen becomes dense enough to impede breathing. One solution is to use an even lighter gas, hydrogen.

Experimental hydrogen-helium-oxygen gas mixtures have been used by COMEX in France to slightly exceed, at 2290 fsw (701 msw), the U.S. deep diving record (2250 fsw, 686 msw) set using a mixture of helium, nitrogen and oxygen.

Hydrogen has one annoying property — it is narcotic. It is far less narcotic than hyperbaric nitrogen, and some narcosis seems to be necessary to counteract the deleterious effects of the High Pressure Nervous Syndrome (HPNS). However, unlike nitrogen narcosis, which is akin to mild alcohol intoxication, hydrogen narcosis is reported to be psychotropic, inducing at great depth altered realities akin to those produced by LSD.

I once was conducting medical research on a 450 msw dive at the German GUSI deep diving chamber, and one of the divers was a French diver who had been a subject on the French hydrogen dives. He reported, without going into detail, that he did not like the effects of hydrogen at all. It was strange, he said. On the other hand, the same diver did very well on the helium-nitrogen-oxygen gas mixture used at GUSI and Duke University.

That some exotic gases on deep experimental dives would be considered strange is an understatement. Deep hydrogen has been reported to produce out of body experiences, something that a person as well grounded as a professional diver would consider frighteningly bizarre.

Swedish diver Arne Zetterström

The Swedes, and Arne Zetterström in particular, were interested in hydrogen diving during World War II for a simple reason; they wanted to dive deep, without the effects of nitrogen narcosis, but did not have access to helium. Most helium comes from gas wells in the United States and Russia. So, looking for another diluent gas other than helium, Zetterström briefly considered two constituents of intestinal gas (flatus), namely methane and hydrogen. Arguably, it was easy for the Swedes to produce plenty of methane and hydrogen. Just how they planned to do that is something I never asked.

Eventually, hydrogen was chosen for the Swedish dives simply because hydrogen was less dense than methane.

In principle, hydrogen could be used by a deep technical diver, but only at depths deeper than 132 fsw (5 atmospheres), a depth which would turn the noncombustible 4% oxygen in hydrogen gas mix into a so-called normoxic gas mixture, meaning it would have about as many oxygen molecules per breath as air at the surface. If the diver attempted to come shallower on that same gas mixture, he would lose consciousness due to hypoxia.

Since helium is not a combustible gas it does not have gas mixture restrictions. As long as  a helium-oxygen gas mixture contains the right amount of oxygen (not too much and not too little), then it will be safe. Both nitrogen and helium are therefore far preferred over either of the flammable gases methane and hydrogen  for use in breathing gas mixtures for diving.

Nevertheless, as divers continue to explore ways of diving deeper, it is certainly possible that hydrogen and other exotic gases may eventually play a role in deep life-support. Who knows, perhaps a perfect gas mixture will involve a blend of hydrogen and methane along with oxygen. If so, perhaps we could call it, oh I don’t know, maybe … Flatogen!