Blog

I Dreamed about Flying Last Night

I rarely dream about flying, but I did last night.

I seem to have a propensity for thinking about flying. I’ve written about flying hybrids, as in James Patterson’s Maximum Ride series about a flock of flying kids, which is, as I’ve said before, “some of the most interesting reading a bird man (aka aviator, pilot) is likely to find in an airport bookstore.”

I’ve written about flying whales, and I’ve written about flying airplanes. But until now I haven’t written about flying dreams.

One reason is simple: no one wants to hear about other people’s dreams. But flying dreams are part of our collective experience. Everyone has them at some point, usually when young. As I grow older I find them occurring less frequently, and therefore find them all the more enjoyable for their rarity.

Flying dream artwork by Joseph Kemeny (www.josephkemeny.com)

Last night my arms were initially wings, but I quickly realized that I lacked the strength to fly with wings like a bird, or like Maximum Ride. I solved that problem by reverting back to my old dream style, flying with outspread arms, effortlessly.

I was standing on a 3rd story window ledge in a home where a young boy was close by, and I accidentally knocked a small pumpkin sitting on that ledge to the ground. It splattered.

Feeling some sense of responsibility for the child’s welfare, I told him not to try what I was about to do, for his head would splatter like the pumpkin. And then I stepped off the ledge and flew.

It was foggy, but instinctively I knew how to get where I was going, without aid of charts or GPS. I knew I could navigate based on some primordial signal in my brain, like a migrating bird.

It was wonderful.

It was undoubtedly a lucid dream because I was aware of a certain biological need that I consciously resisted because I did not want to break out of the dream. I knew I would never regain the dream once it was broken.

The strangest flying dream I had was only seconds long but memorable. I was viewing a glass city, with tall glass spires reaching far into the sky. It was clearly not of this earth, and I can’t swear that I was even human. But I launched myself from near the top of one of those tall glass buildings, and swooped downward, gaining speed, then glided on without effort, like an eagle.

In my college days I told my roommate about a flying dream where I was trapped underneath trolley lines in Atlanta (yes, they used to have electric trolleys downtown in the 60’s) and he found that amusing, but I did not. It was peculiar, but frustrating.

Reportedly it’s common to encounter barriers like electrical wires, and this time I sure enough found those blocking my way at one point, but unlike before I was able to ascend vertically till free of them, then continue on my way.

Sigmund Freud made much ado about dream interpretation, and would no doubt see physical barriers in flying dreams as symbols of psychological barriers existing in the dreamer’s waking world. But the fact that flying dreams are so common, even archetypal in a Jungian sense, and typically so enjoyable, makes me wonder if they might be more than some complex mental fiction that requires a highly paid professional to interpret. Perhaps they are nothing more than memories.

While you digest that thought, I suggest you enjoy the wonderful flying sequence below, generated by a computer game. For full effect, play it in high definition and full screen.

 

 

A Look Inside Rebreather Scrubber Canisters, Part 2

Computer modeling allows you to see things that are invisible in real life.

The previous posting showed the complex thermal profiles generated in a rebreather canister found in closed-circuit underwater breathing apparatus during the CO2 absorption process. But heat generation is just part of the absorption process. Simulation allows you to see how the end product of CO2 absorption, calcium carbonate, gets deposited inside the canister.

To the right is calcite, a form of calcium carbonate. Divers never see crystals of calcite in the scrubber canister because sodalime granules are never completely converted to calcite. Typically, no more than 50% of the granules react completely with exhaled CO2.

The following images show the interior of a a scrubber canister as the sodalime granules begin reacting with exhaled CO2. When sodalime granules first begin to absorb CO2 the image becomes purple. With more CO2 the color turns reddish, and when all binding sites are filled with reacted CO2, the granule color becomes yellow.  

The more carbonate in a particular location in the granule bed, the more yellow the image.

The probability that an exothermic absorption reaction would occur is dependent on the granule temperature, the granule size, the number of granules and the number of sites available for reaction in each granule.

In the second image, CO2 absorption sites in the inlet to the canister were completely filled (thus showing yellow), and small pockets of absorption were extending up the canister walls.

When I saw the third computer-generated image, I was surprised. It showed that in the central portion of the absorbent bed, the moving thermal front seen in the previous post was leaving behind a calcited bed. However, sheets of calcium carbonate were forming on the outer surface of the canister, the coldest portion of the canister.

Initially that result was counter-intuitive. Then I realized that low temperature makes the odds very low that the first granule encountered would absorb CO2. All chemical reaction rates are temperature dependent, therefore exhaled CO2 would be very likely to proceed downstream to the next granule. There again the odds of being absorbed would be low so the CO2 molecule would continue downstream.

However, given enough opportunities, even low probability events eventually occur. That means that along the cold canister walls, carbonate begins to be deposited much further downstream than in the warmest, and most highly reactive portion of the bed.

Unfortunately, the low probability of CO2 absorption in cold granules means that CO2 hugging the cold canister walls is likely to pass completely through the canister, unabsorbed. Chances are also high that the same molecule would be shunted to a different portion of the canister on its second pass through the canister, and therefore would eventually be reabsorbed.

The following link is to a high definition video showing carbonate deposition in a cylindrical scrubber canister as the simulated diver plunges into icy water. For best effect go to full screen and 1080p mode.

 

 

Further details about the computer simulation involved in the production of these images and video can be found in the paper “Computer Modeling of the Kinetics of CO2 Absorption in Rebreather Scrubber Canisters”, in MTS/IEEE OCEANS 2001 Conference Proceedings, published by the Marine Technology Society; Institute of Electrical and Electronics Engineers; Oceanic Engineering Society (U.S.); IEEE Xplore (Online service).

A Look Inside Rebreather Scrubber Canisters, Part 1

If you’re diving a rebreather (closed-circuit breathing apparatus to be exact), then you know the scrubber removes carbon dioxide from your recirculated breath. Without the scrubber working, you’d go unconscious from carbon dioxide intoxication within a very few minutes of starting the dive.

But do you really know what’s going on inside that scrubber canister?

A stochastic computer simulation developed by the author gives as realistic a glimpse inside as we can get.

Loose granular and rolled sodalime. Click to enlarge.

Carbon dioxide scrubber canisters usually contain a chemical mixture called sodalime that chemically reacts with carbon dioxide in a diver’s expired breath. That material may be in granular form, or in a preformed roll. Sodalime is a mixture of calcium hydroxide and sodium hydroxide, which when it reacts by absorbing carbon dioxide is converted into calcium carbonate (CaCO3, calcite), a major constituent of limestone.

The overall chemical reaction can be simplified to:

CO2 + Ca(OH)2 → CaCO3 + H2O + heat

In the following sequence of images we see a rectangular prism shaped scrubber canister arranged axially such that the diver’s expired breath enters the section from the left, passing completely through the canister section before exiting to the right. A portion of the canister was cut away digitally after the simulation was run to allow visualization of temperatures within the canister interior.

Beginning of the simulation. Click to enlarge.

Initially, the canister is at room temperature, and then is immersed in cold water as the diver begins his dive. Temperature is color coded: the coldest temperature is black, and increasing warmth is portrayed in an intuitive fashion from purple to red to yellow, and finally white, being the highest temperature.

In the first image, CO2 has just started reacting with the sodalime at the entrance to the canister section, with a slight heating resulting. Thermal conduction is cooling the exterior surface of the canister, but most of the inside still remains at room temperature.

In the second image, the reaction front has clearly formed, and the hottest portion of the canister has begun moving downstream. Convection carries heat rapidly downstream to heat the diver’s inspired breath, and is seen to offset canister cooling due to conduction from the surrounding cold water.

Click to enlarge

In the image to the left, the heating front is fully developed, and residual heat has spread almost completely throughout the downstream portion of the canister.

In the next image, to the right, the front is beginning to weaken in intensity.

 

 

 

Finally (lower left figure), the thermal heating in the reaction front, indicative of CO2 absorption effectiveness, is fading out, and the cooling of the canister from the surrounding cold water is beginning to win the tug of war between heat generation and conductive cooling.

At that point in time, the canister is spent, and essentially all of the exhaled CO2 is passing right through the canister without being absorbed. If the diver had not ended his dive before his canister reached this point, he would be at great risk of passing out due to CO2 accumulation.

The last figure (lower right) shows temperature readings at various locations, and at various times (reps) throughout the simulation run. The orange and brown traces marked “temp” are measured temperatures from locations near the entrance to the canister. They rise abruptly as the absorption reactions start, and fall quickly as the reaction front moves past them, downstream.

Click to enlarge

The curves that remain elevated longer represent the average exhaled gas temperature, and the average temperature within the absorbent bed. After reaching a peak, the average bed temperature steadily drops as cold gas from the inlet (exhaled) gas chills the portion of the bed behind the reaction front. Exhaled gas temperature, on the other hand, climbs more slowly, but remains more stable until the bed becomes depleted of absorbent activity.

The monitoring of absorbent canister temperature changes is what makes the rebreather scrubber canister monitors used in the Inspiration and Sentinel rebreathers possible. The Sentinel technology is licensed from the U.S. Navy Experimental Diving Unit.

In the next posting, we’ll see the surprising way that cold canisters fill up with calcium carbonate.

 

 

 

 

 

 

 

 

 

The following is a high definition video of the computer simulation of heat generation and loss in a short cylindrical canister. For best effect go to full screen and 1080p mode.

 

 

Further details about the computer simulation involved in the production of these images and video can be found in the paper “Computer Modeling of the Kinetics of CO2 Absorption in Rebreather Scrubber Canisters”, in MTS/IEEE OCEANS 2001 Conference Proceedings, published by the Marine Technology Society; Institute of Electrical and Electronics Engineers; Oceanic Engineering Society (U.S.); IEEE Xplore (Online service).

Diving Accident Investigation

Diving helmets waiting for accident investigations. Click for a larger image.

Compared to aircraft accident investigations, diving accident investigations are often ad hoc in nature, poorly conceived and poorly funded. Nevertheless, these investigations are just as important for the safety of the diving public as are similar investigations for the flying public. Unfortunately, no national regulations presently address how investigations of diving accidents should be conducted: volunteer investigators have no legal status for extracting information about an accident, and they have no legally binding protection from litigation based on the conduct of their investigation or on its results. That is, no business case can be made for conducting diving accident investigations, in spite of the moral authority for conducting them.

With the conviction that this untenable situation must eventually change, this presentation will describe one approach to diving accident investigations with particular emphasis on rebreathers and will draw some comparisons to aviation accident investigations by the National Transportation Safety Board (NTSB).

Aircraft accident investigations

The "black box" containing data recorded just prior to, and during, a commercial aircraft accident.

Pilots know that if they are involved in a fatal crash, the NTSB will investigate the accident by examining in excruciating detail everything those pilots did for hours, perhaps even days or weeks, leading up to that accident. It will investigate how often they called flight service to check on the weather. The NTSB will go through those pilots’ personal logbooks to check on their currency and proficiency, and it will check Federal Aviation Administration (FAA) records for a history of violations. NTSB investigators will also examine an aircraft’s logbooks to scrutinize its maintenance records. They will play back voice and radar data, and if a data recorder is available, they will analyze its contents.

Then they get personal. The NTSB and its FAA counterparts will talk to mechanics, surviving passengers, and friends to ask questions such as, “What were the aviators’ attitudes toward flying? Were they cavalier? Did they take unnecessary risks, or were they careful and methodical?”

Accidents happen.

Due to the detailed, scripted nature of NTSB procedures, the investigation may take up to a year to complete.

A few years ago a pilot’s engine failed and he was forced to make a water landing just off a beach. The ditching should have been survivable, but he lost consciousness on impact and sank with the airplane as it settled to the bottom in relatively shallow water. He drowned.

If he had been a diver, that would have been the end of the story. The public judgment would have been, “A diver drowned. He tried to breathe underwater; this is what happens.” But this victim happened to drown inside an airplane. So instead of the medical examiner simply saying that he drowned, the NTSB started its very thorough investigation procedures.

Fortunately, the pilot also had a surviving passenger. From the survivor’s statement, the aircraft’s maintenance records, and the mechanic’s testimony, an ugly story of reckless disregard for the most basic safety rules of flying began to emerge.

Do divers ever show a reckless disregard for basic safety rules? You bet. It’s unfortunate that the pilot died, but the events leading to his death were a useful reminder that the media in which we work and play, high-altitude air and water, are not forgiving. Humans are not designed for flying or diving, and nature only begrudgingly lets us trespass — on its terms.

The U.S. Navy and Coast Guard are chartered to investigate diving accidents. Unfortunately, there is a huge discrepancy in the number of personnel and the amount of funding for aviation accident investigations compared to diving accident investigations. The NTSB has hundreds of personnel and tens of millions in funding available, whereas the entire U.S. Navy has at most a handful of investigators with no investigation-specific funding.

Investigation team requirements

In the best of all worlds, an investigation team should have access to both a manned and an unmanned test facility, access to experts in all diving equipment (scuba, rebreathers, helmets), and the ability to conduct and interpret gas analyses — sometimes from minuscule amounts of remaining gas. At a minimum, such a team needs the ability to download and interpret dive computer/recorder data. Some investigations may require the simulation of UBA-human interactions for “re-enactment” purposes. An investigation team should also have diving medical expertise available to review medical examiner reports for consistency with known or discovered facts regarding the accident. Last, it should have in-depth knowledge of police investigative procedures, particularly of the procedures and documentation for maintaining “chain of custody”.

Do rebreather investigations have a future?

Considering the resources and time-frames required for laboratories such as the Navy Experimental Diving Unit (NEDU) to conduct diving equipment evaluations on a limited set of accident cases, and the unfunded costs associated with those investigations, it is difficult to imagine a resolution to an ever-increasing need for rebreather investigations. Almost certainly, no independent federal agency similar to the NTSB will ever be responsible for investigating diving accidents, simply because diving accidents lack national attention: the public at large is not being placed in jeopardy.

It is also unlikely that diving equipment manufacturers would welcome federal agency oversight and regulations comparable to those engendered by the FAA and NTSB. Diving might become exorbitantly expensive. For instance, if a $5 part available for purchase in an automotive store were to be used in an aircraft, it would become a $50–$500 part because of FAA required  documentation that it meets airworthiness standards.

The U.S. Coast Guard initiates diving accident investigations and in some cases conducts hearings into those accidents; however, with its enhanced role in Homeland Security, the Coast Guard is unlikely to welcome any efforts to diversify its mission. The cost/benefit ratio would appear to be too great.

For the future, as Dick Vann of DAN has suggested, the resolution may ultimately depend on rebreather users funding a team of dedicated, professional accident investigators. The cost of conducting worthwhile investigations has yet to be determined, and therefore the amount of funding needed to support it is unknown. I suggest that obtaining those estimates should be a priority as we, rebreather users and the industry, decide the next steps in investigating rebreather accidents.

 

The above are highlights from this author’s publication of the same name, found in: Vann RD, Mitchell SJ, Denoble PJ, Anthony TG, eds. Technical Diving Conference, Proceedings. Durham, NC: Divers Alert Network; 2009; 394 pages. ISBN# 978-1-930536-53-1.

This book is available for download at no cost as a PDF file from the Divers Alert Network website (http://www.DiversAlertNetwork.org/or from http://archive.rubicon-foundation.org/8300

On the Odds of Being Struck by Falling Satellites

UARS satellite before deployment. Photo credit: NASA Johnson Space Center.

NASA says the odds that someone will be struck by falling space debris when the bus-sized NASA Upper Atmosphere Research Satellite comes down this week is 1 in 3200. Which got me to thinking … if I was struck while out walking Friday night, would I be unusually lucky because I beat the odds, or unlucky because I beat the odds?

Would my life insurance company pay off? Arguably it would not be an act of God, or an act of war, so I think the insurance company should pay. But I really don’t know if they would; admittedly, I don’t have a falling space debris clause in my policy. (As the space around our planet becomes increasingly crowded, perhaps space debris insurance would be a good investment.)

Now if the odds were 1 in 3200 for each of us, can you imagine the chaos? That would be a mass casualty event in the making. Those odds would be much higher than the odds of being killed by almost anything else I can think of.

From Dr. Strangelove. Click to activate the video.

I suspect there would be anti-NASA marches on the capitols of all the nations affected, which would be most of the world’s nations, by people demanding we nuke the satellite before it poses a hazard. Or maybe they’d demand we send space cowboys up to guide the careening space bus to a safer impact. (I’m not sure how those heroic bronco busters would get back; maybe they’d ride it down a la Dr. Strangelove.)

Fortunately, the odds are mighty small (1 in 21 trillion) that you or I would be hit by this particular satellite. There are much greater chances of winning a state lottery.

But assuming a piece did actually hit me without putting a hole through my head or chest, maybe simply winging me, could I profit from it? Would I become an instant celebrity? Would there be book deals? Can you imagine the television talk show questions, like “How did you feel about your impending death when you saw the fire ball heading your way?”

Let’s face it, with burning metal hurtling to Earth at 18,000 miles per hour I likely wouldn’t see it in time to react, and if I did see it, I undoubtedly wouldn’t have time to mentally compute its trajectory. Should I stand still or run? In fact, I think that calculation would be impossible. An incoming missile simply gets larger and larger in your field of view, giving you perhaps just enough time to say “Oh…” but not enough time to finish the four letter expletive you had intended.

But frankly, I’m not at all concerned. If it happens at all, it wouldn’t happen to me. It always happens to the other guy. Which I’m sure is what the insurance companies are hoping – it will be the other guy, and the other guy will be uninsured.

If pressed, I suppose I could see the insurance company’s point; If I did get squashed by supersonic satellite debris it probably would be an act of God.

Now, I’m trying to think, have I done anything to tick Him off lately?

 

 

 

 

 

A Frog Drowned in My Pool

Leopard Frog (Rana pipiens). Photo credit: Bill Sutton

The little fellow was fast, and wily.

I was chasing him around the pool with a skimmer net, trying to herd him to the side of the pool where I had some chance of scooping him up with my hands. As the net approached he would kick to the eight foot deep bottom and then gracefully glide, legs in trail, along the contour of the bottom and sidewalls up to the edge of the pool. In dark water that tactic worked beautifully because his enemies could not see where he was going. But since he was in clear pool water I could see exactly where he was headed.

I’d sneak around the pool edge, out of his sight, and then grab for him as he floated at the surface. But he’d invariably see me in time to flip over and kick to the bottom again.

I had to admire his strength, speed and agility. He was clearly in his element. And besides that, he could breathe through his skin, absorbing oxygen from the water. Neat trick I thought, as I remembered various attempts by engineers to create artificial gills for humans — attempts that have all failed — so far.

Tadpoles have gills, but those gills are lost as the tadpoles metamorphose into frogs. Instead, frogs use a combination of lung breathing and skin breathing, called cutaneous respiration. Breathing through their skin allows them to remain underwater for months during the winter, when they are hibernating. However, when frogs are actively swimming, their oxygen demands are quite high, as you would expect. As the chase continued I had no idea how much or how little oxygen he could extract from the pool water.

For cutaneous respiration to work, frog skin has to stay moist, hence their desire to be close to water. But this frog was in the wrong water. I was about to pour chlorine into the pool, and if he didn’t get out of the pool, he wouldn’t survive. The chase was really in his best interest, but he didn’t know that of course; he was simply trying to avoid becoming my lunch.

So basically he never had time to take a breather. I figured at some point he’d grow tired from all the exercise and would allow me to catch him in the net and lift him out of the pool.

I was wrong. Before he quit swimming he apparently ran out of oxygen, in spite of the fact that he was getting oxygen from the water through his skin. But he wasn’t getting enough; he passed out.

Well, that sure made it easy to scoop him up.

Once I got him in my hands, I started frog CPR. No, I did not give him mouth to mouth ventilation. But I did give his little chest tiny squeezes, thinking that would do him some good. Apparently it didn’t; he never regained consciousness.

I buried him in my garden with all the solemnity due a frog, and vowed over his little green body that I’d do better with keeping the chlorine levels up so future frogs would not be attracted to the pool. Of course that was for my benefit as well, because where frogs are, water moccasins are not far behind.

I think it’s tough being a frog.

I mostly kept to my promise, but inevitably, another leopard frog or two attempted to take up residence in my concrete lined pond.

Being a scientist, I decided to conduct an experiment. I repeated my earlier, potentially deadly chases, but this time I reacted instantly when the frogs passed out. Soon as they went limp I scooped them up with my net and laid them in the grass. Before long they recovered and started frog-hopping away. Speed was of the essence in their rescue, and quick reactions on my part worked to keep the frogs alive.

So yes, frogs can breathe through their skin, absorbing oxygen and releasing carbon dioxide, but only enough to support resting needs. When they are active, they must supplement gas exchange by gulping air into their lungs. Now I know.

(The loss of the first frog was an accident, not animal cruelty! Do not repeat this in the name of science, because it also is not science.)

I’ve since learned that I’m not the only person with frog-in-pool problems, and conveniently, small animal escape devices are available. Here’s a video of one that allows frogs to self-rescue without being dependent on any near-death escapes foisted upon them by me. (I’m not associated with the manufacturers or dealers in any way.)

[youtube id=”NlNbpBDRuMc” w=”500″ h=”400″]

 

 

 

 

 

 

 

 

 

 

Yea, Though I Fly Through the Valley of Death…

Photo credit: Bob Hammitt

It is true; sometimes it is better to be lucky than good.

At a time before virtually all light aircraft had GPS navigation and on-board weather, an instrument-rated pilot would spend lots of time studying the printed station weather reports and forecasts across his route of flight, and then, if things looked reasonably good, pilots would launch into the unknown, with fingers crossed. However, even with the best planning, a pilot can find that weather has changed dramatically in flight.

One of my most memorable flights was from Waycross, Georgia to Gainesville, FL. The flight was in N3879T, a Piper Arrow not too different from the Arrow I’m flying now.  The 94 nautical mile flight would take roughly 45 minutes.

I was lucky since Waycross had a weather radar station on the field; I visited the station to study the radar screens to see what weather systems were active that Sunday afternoon. I had to be back to work on Monday, and it looked like there would be nothing to prevent that.

When I became airborne the weather was ideal; not a cloud in the sky and at least ten miles visibility. The aircraft did not have an autopilot, but I was proficient flying by instruments so I wasn’t concerned when I started entering summer puffy clouds. Eventually the clouds grew closer together, and I was spending more time in the clouds than out.

And then the rain started. Without on-board weather radar, I was very much flying blind.

Flying through rain in Florida is not unusual, but after awhile the rain became more intense, and the diffuse light in front of the airplane became darker.

When I say the rain became more intense, let me put “intense” into perspective. Most airplanes are made of thin sheets of aluminum suspended on aluminum spars. So rain hitting it sounds like banging on metal drums. The resulting din reverberated through every space in the aircraft.

Funny, I thought. None of this was showing on radar when I took off, and there was no forecast of it.  Fortunately, the air was smooth, and I had no problem controlling the aircraft even in spite of seeing nothing out of the windscreen. But I did wonder at one point how the engine could deal with so much water. I don’t know if it did well because of fuel injection or not, but the engine never hiccuped.

At one point, the view out front looked menacingly dark, but off to the left side the light seemed a little brighter. Instinctively I wanted to head where it was lighter. I keyed the microphone to call Air Traffic Control (ATC) and requested a 20 degree deviation to the east, and that was approved. Unfortunately, at that time ground radar which was used to control aircraft was not as good as it is now for showing weather, in particular rainfall intensity. Thus, ATC could not offer a preferred direction for me to fly to escape the worst weather, but at least they assured me that I wouldn’t run into other aircraft. Thank-goodness for that at least.

And then it occurred to me — am I the only idiot flying in this weather?

But even after the course change, the crescendo of rain and noise became almost deafening. After a few minutes of unrelenting watery pounding of the aircraft, ATC called back, but due to the ambient noise level I had a hard time understanding them.

“Say again please?” I asked.

“How’s the ride?”

I reflected for just a moment on the important information before responding, then in as professional a tone as I could muster, “Wet but smooth.”  What I felt like saying was, “It’s like freaking Niagra Falls up here!”

Considering the three words I actually said, the word  “smooth” was what was critical. Severe turbulence can cause a pilot to lose control in the clouds. If you’re flying by instruments alone, and the instruments start varying wildly because the aircraft is being bounced to and fro, then it takes a very skillful pilot to maintain safe flight. Unskilled pilots have pulled the wings off their aircraft by over-controlling in responce to a turbulence-induced upset.

Nexrad image of a squall line. How bad it looks from the cockpit before entry depends on which way you’re flying – from right to left or left to right.

Then it stopped. I flew from deafening, pounding rain, into perfectly clear air. The transition occured literally in a split second. Before me lay only a few small summer cumulus clouds. Out of curiosity I looked behind me — and almost lost my cool. What I saw was a solid wall of black clouds and rain reaching from the ground to far above me. It looked like a cliff, like the smooth edge of a giant black skyscraper, except it was one that stretched in a perfect line from as far as I could see to the east and west.

It was a frightening looking squall line, and had I been flying in the opposite direction there was no way I would have penetrated that wall of certain death. But approaching it from the benign-looking side of the squall line, lulled by innocent looking summer clouds, I had stumbled unawares into a potentially lethal trap.

But somehow it had not claimed me; it had been smooth during the entire flight. I had encountered no hail, no lightning, and no severe up and down drafts. Assuredly, the odds against that outcome were extremely small. Had I not made a 20° turn toward the light, so to speak, the outcome might have been much different. Of course I’ll never know for sure what would have happened, but the statistics say it would not have turned out well. I was lucky.

Yes, I’ll take good luck any day, but as the title of this post suggests, it may have been much more than luck that directed me safely to the other side of the squall line. I had, after all, been praying.

 

 

 

 

 

Introducing Our Galaxy to a Child

A clear night with our Milky Way galaxy seeming to glow iridescently is unforgettable. I remember seeing it once as a child, looking up from a field in the darkness of rural Texas, once from the deck of a rolling ship in the tropics, once from my aircraft on a beautiful night flight headed home, and once on the deck of a beach house on Cape San Blas, Florida. In each instance the conditions were ideal; no clouds, no moon, with very little obscuring moisture in the atmosphere.

The most thrilling time was the last time, when I left the bed where a three-year old was snuggled next to me, and joined my wife and our 11-year old granddaughter on the deck. It was late, and I was surprised to see them up, but when I looked up into the night sky I saw why they remained.

“Isn’t that the Milky Way?” my wife asked.

The eleven-year old had never seen the bright swath of starry light that is the interior of our galaxy. She was puzzled. “If we’re in it, how can we see it?”

The Milky Way and comet McNaught Druckmuller (Image credit: Miloslav Druckmuller.)

I was thrilled to have the chance to explain, best I could, how on just such rare nights we could see in the direction of the galactic center, but yet we can’t see the actual center because of obscuring dust. I further explained that lurking in the center of the billions of stars in the galactic center is a massive black hole.

Our neighbor, the Andromeda galaxy

I know she had seen pictures of galaxies, like M31, Andromeda. She knew how galaxies should look, and what she saw did not match the photographs. She had never thought about how a galaxy, our galaxy, appears from the inside.

When our children were still young I drove the family from the Washington suburbs to the Blue Ridge Mountains to go star-gazing with binoculars and a telescope. But I think the most wondrous experience for them was what they saw unaided, the vast panorama of visible stars relatively bright and close to our planet. At the time, my preteen daughter, then about the age of our present eleven-year old granddaughter, was sleepy and complaining about the cold. Now that she’s an educated adult she  recognizes what a special experience that was.

One of the benefits of keeping children up past their bed times, at least on occasion, is the chance to see the stars. It will have a lasting effect on them; at least it did for me. Before my first night of star-gazing, my world had ended a few feet ahead of me, and a few hours ahead in time. My concerns, like those of most children, were immediate. But after that one starry night experience, my perspective stretched to the stars.

That is a wonderful experience to share with children of an appropriate age, lest they forever close their visual boundaries to all things lying beyond our Earth’s horizon.

[Milky Way in the desert photo (top) by Jurvetson (flickr)]

If Whales Could Fly

When Ottorini Respighi wrote his symphonic poem Pines of Rome, he was not imagining flying whales. Instead, the last movement of his work invokes the imagery of a Roman Legion marching along the Via Appia Antica.  When I would listen to the drumming and droning of the orchestra I never imagined whales flying either, at least prior to the year 2000.

But somebody at Disney Studios did, as evidenced by Fantasia 2000. The flying whales animation, accompanied by Respighi’s score, is now one of my favorite segments of the Fantasia 2000 DVD.

With a name like Fantasia, we should fully expect fantasy, fantasy being defined as an art form devoid of any requirements for plausible scientific foundations.  And Fantasia has always delivered that art form in abundance.

In contrast, science fiction may have fantastic elements in it, but there is an expectation that the writers’ creations be somewhat defensible on the basis of known scientific principles. So, what if whales could fly? What would be the real world consequences of such an improbable occurrence? What does science have to say about it?

For one thing, flying whale babies would not have to worry about being eaten by Orcas, as mentioned in my last posting. So whale populations would increase, unless the inexperienced calves flew into wind farms and airplanes.

As a pilot and airline passenger, my first concern would be whether airborne whales could be detected on radar. Is the whale’s smoothly rounded shape, it’s tough but flexible skin and potentially radar absorbing blubber stealthy in the same way that stealth bombers elude detection by radar?  If so, the air traffic control system would have real problems. Sure, flying whales would be easy to see in day light, but can you imagine encountering them at night or in clouds without benefit of radar? I shudder to think.

And yes, whales migrate continuously, night and day, so they would be a gargantuan risk to air traffic in low visibility conditions. Compared to a whale strike, bird strikes would be a minor affair.

What if flying whales blunder into restricted air space, like over the White House? There are missiles there, I hear, capable of shooting down intruders. But would I want to be the one to pull a trigger that blows a whale to blubbery bits all over Washington D.C.?

Perhaps whales would be granted an exempt status, like migrating geese. But what if terrorists took advantage of that and managed to bring down an intact whale in the middle of the White House Rose Garden? I haven’t calculated the kinetic energy of a full grown falling Gray Whale, but at a weight of 40 tons or so, I doubt anything trapped under the  whale would survive the impact.

Unfortunately, a science fiction writer envisioning flying whales can’t avoid the inevitability of whale poop. While bird poop is an inconvenience, falling whale products of digestion would likely prove lethal. What a lousy way to die. (OK, I admit I was thinking of using a different adjective.)

The Achilles’ heel of any flying whale story would have to be buoyancy. It has been estimated that approximately half of a grown whale’s weight is derived from blubber. What if a whale replaced all of its blubber with hydrogen? [While I could choose helium as a buoyant gas, helium is not produced biologically, whereas hydrogen is, as a product of flatulence.]

Hydrogen has a specific buoyancy of approximately 71 lbs per 1000 cubic ft, so a 20,000 lb whale (stripped of all blubber) would need about 282,000 cubic feet of hydrogen to be neutrally buoyant (to float in air). To put that into perspective, the Goodyear Blimp weights 12,840 lbs, and has a volume of 202,7oo cubic feet. So a flying whale would have to be roughly 50% larger than the Goodyear blimp. [I leave a more exact calculation to high school physics students looking for an imaginative problem to solve.]

From a science fiction standpoint, that is entirely conceivable. Buoyant whales would be much larger than modern whales.

As for a means of propulsion, I don’t think whale fins would suffice; they don’t look enough like wings.  But with a little imagination, I bet most school kids could think of a means of propulsion that would be akin to, dare I say, jet propulsion.

I think I now have the makings of a science fiction novel. I’ve got the science figured out: all I need now is a plot and some interesting human characters.

To be continued, perhaps …

Battle of Titans: Orcas vs Gray Whales

It is an ageless story, mothers banding together to protect their young from instinctive killers. The fact that it was a battle between behemoth Gray Whales and Killer Whales (Orcas) made it all the more epic in scope, and worthy of the telling.

A fellow scientist and I had driven south early one springtime morning from Anchorage, Alaska to Seward. At 11 AM our glacier view cruise boat left the docks at Seward and headed for the glacier fields at the Kenai Fjords National Park where the glaciers sliding slowly down from the mountains calved into the Gulf of Alaska.

Heading south from Seward.

From there we motored on until we were attracted to a near-shore area by the blowing of water and foam from a group of migrating Gray Whales. The rapid pace of their exhalation was a sure sign that something was wrong. We had stumbled upon a battle involving another type of calf just as the combatants were taking their positions on the battlefield.

A female Gray whale weighing between 30 to 40 tons had birthed her baby during the winter in Baja California and now the mother, quickly growing baby, and two female caretakers (often  called “aunties”) were almost through with their migration to the Bering Sea. But as they swam beyond Prince William Sound, not far from their final destination, they were attacked by two adolescent transient Orcas who wanted that baby whale.

Our boat stopped far enough from the battle to not hinder the fight, but close enough for us to witness the events. Our biologist guide warned us that if we had a weak stomach we might not want to watch because often times the Orcas succeed in killing the baby Gray.

I don’t think anyone on the boat averted their eyes as the three massive females arranged themselves head to tail into a triangular defensive formation, with the baby in the middle. There was no way for the Orcas to get past the females on or near the surface, so they made repeated dives trying to enter the center of the triangle from underneath and attack the baby. But with each dive, the wily Grays maneuvered to block the Orcas.

The Orcas were nothing if not persistent. Perhaps sensing that, the whales started moving closer to a rock cliff face, and then they did something clever, but potentially risky. There was an opening in the rock wall and the baby whale had been nudged into that opening. One whale, probably the mother, was completely blocking that opening with her body. The Orcas tried repeatedly to find a way past her to the baby, but between the blocking action of the other two Grays and the blubbery plug of the cave entrance by the mother, there was nothing the Orcas could do.

We of course saw the riskiness of that defense. It looked to us like the baby was trapped underwater. Even a whale has to breathe sometime.

The other boat was too close to the action, but provides scale for the "cave".

But as I look at the photo I realize now that the cave was tall enough and just deep enough to allow the baby to breathe even with water access cut off. Obviously, the Gray Whale mother had made good use of her 4.3 kg brain. Nevertheless, from our elevated vantage point we could see over the mother whale, and we saw that the baby remained submerged. I’m guessing it was wedging itself in as tightly as it could. The anxiety on our boat grew perceptively as the minutes ticked down with us knowing the baby was holding its breath.

The tactic worked, for the Orcas eventually tired of the game, and after making one or two leaps out of the water they moved away from the whales and headed north toward seal colonies we passed on the way south. The seals would be easier pickings than those highly protective Gray Whales.

There was jubilation on our boat. I think we’d all been holding our breath like the baby, at least a little.

When the coast was clear, literally, the Grays moved back into the open water near where the battle had begun and caught their breath, heaving great geysers of watery air as they panted. They had obviously been very stressed, but their cleverness and strategic cooperation saved the day, or at least the moment.

Two Orcas. Copyright by Rolf Hicker. Used under fair use.

Things could have been different, both better and worse. Local Orcas were so-called residents who don’t attack Gray Whales. Residents tend to be fish eaters. Fortunately for the Gray baby, the more lethal transients were not as experienced with the local geography. They were also adolescents, not as experienced as adults, and there were only two of them. A pack of them, with adolescents being guided by adults, might have been more succesful. Transient Orcas, genetically different from Residents are reported to kill a third of the baby Gray Whale population each year.

Interestingly, the Grays seem to know where transient Orca populations are the most active, and in those regions they tend to stay close to shore. In this case that strategy paid off by allowing the baby to be protected by a rock wall and its mother.

On the boat we celebrated all the way back to Seward; we had witnessed a frightening conflict with, for us and the whales, a happy ending.

To learn more about Orcas attacking mother Gray Whales and their calves, see the excellent photos and story at the following website. http://creagrus.home.montereybay.com/MtyBayOrcaattack.html