Dead Space – A Lesson in Survival

Dead Space is a defunct, or shall we simply say “dead,” survival horror game that enthralled computer game players from 2008 to at least 2013. Sadly, the company that designed the horrifically beautiful game, Visceral Games, is no more. It has been, so to speak, eviscerated.

The main protagonist of the Dead Space Series was Isaac Clarke. If I was a game player I think I would be an Isaac fan since he was one of those rare Clarke’s known as a “corpse-slaying badass.” If in some unforeseen future my survival depended on being such a slayer, I’d want to be badass about it too, just like Isaac. As they say, anything worth doing …

Isaac Clarke and his Dead Space world make a great segue to introduce another matter of personal survival. And that is DEAD SPACE in underwater breathing equipment.

Clarke has proven to be equally at home underwater and in space due to his interesting cyan-lighted helmet. (I’m not sure where his eyes are, but perhaps in the 26th century a multi-frequency sensor suite makes a simple pair of eyes redundant.)

Historically, the U.S Navy used the venerable MK 5 diving helmet and the MK 12 diving helmet, which although they had no sensor suites, at least allowed divers to work at fairly great depths without drowning. However, they shared a common problem: Dead Space.

In ventilation terms, dead space is a gas volume that impedes the transfer of carbon dioxide (CO2) from a diver or snorkeler’s breath. When we exhale through any breathing device, hose, tube, or one-way valve we expect that exhaled breath to be removed completely, not hanging around to be re-inhaled with the next breath.

But a diving helmet inevitably has a large dead space. The only way to flush out the exhaled CO2 is by flowing a great deal of fresh gas through that helmet. A flow of up to six cubic feet of gas per minute is sometimes needed to mix and remove the diver’s exhaled breath from a diving helmet like the MK 12.

In more modern helmets, the dead space has been reduced by having the diver wear an oral-nasal mask inside the diving helmet, and giving the diver gas only on inhalation using a demand regulator like that used in scuba diving. The famous series of Kirby Morgan helmets, arguably the most popular in the world, is an example of such modern helmets.

Full face masks are used when light weight and agility is required, as in public service diving, cold water diving, or in Special Forces operations. The design of full face masks (FFM) has evolved through the years to favor small dead space, for all the reasons explained above.

Erich C. Frandrup’s 2003  Master’s Thesis for Duke’s Department of Mechanical Engineering and Materials Science reported on research on a simple breathing apparatus, snorkels. You can’t get much simpler than that.

Frandrup confirmed quantitatively what many of us knew qualitatively. Snorkels are by design low breathing resistance, and low dead space devices. Happily, the dead space can be easily calculated, as simply the volume contained within the snorkel.

Surprisingly, some snorkel manufacturers have recently sought to improve upon a great thing by modifying snorkels, combining them with a full face mask. The Navy has not studied those modified snorkels since Navy divers don’t use snorkels. However, you don’t get something for nothing. If you add a full face mask to a snorkel, dead space has to increase, even when using an oral-nasal mask.

So what?

In 1995 Dan Warkander and Claus Lundgren compared the dead space of common diving equipment, including full face masks, and reported on increases both in diver ventilation and the maximum amount of CO2 in the diver’s lungs. Basically the physiological effects of dead space goes like this: we naturally produce CO2 during the process of “burning” fuel, just like a car engine does. (Of course our fuel is glucose, not gasoline.) The more we work, the more CO2 we produce in our blood, and the more we have to breathe (ventilate) to expel that CO2 out of our bodies.

If we are exhaling into a dead space, some of that exhaled CO2 will be inhaled into our lungs during our next breath. That’s not good, because now we have to breathe harder to expel both the produced CO2 and the reinhaled CO2. In other words, dead space makes us breathe harder.

Now, if we’re breathing through an underwater breathing apparatus, hard breathing is, well, hard. As a result, we tend to get a little lazy and allow CO2 to build up in the blood stream. And if that CO2 get high enough, it’s lights out for us. Underwater, the lights are likely to stay out.

In a computer game like Dead Space, no one worries about helmet dead space. But if a movie is ever based on the game, whichever actor plays Isaac Clarke should be very concerned about the most insidious type of Dead Space, that in his futuristic helmet. It can be (need I say it?) — deadly.

How Much is Too Much? (Carbon Dioxide – The Diver’s Nemesis)

The amount of carbon dioxide (CO2) that can be safely inhaled by rebreather divers is a continuing point of conjecture, and vigorous argument. Unfortunately, the U.S. Navy  Experimental Diving Unit has confused that issue, until recently.

A non-diver might wonder why a diver should inhale any CO2. After all, the air we breathe contains only a small fraction of CO2 (0.039%). A rebreather is best known for emitting no bubbles, or at most very few bubbles depending on the type of rebreather. It does that by recirculating the diver’s breath, adding oxygen to make up for oxygen consumed by the diver, and absorbing the carbon dioxide produced by the diver. The CO2 scrubber canister is vital to keeping the diver alive. As pointed out in the first post in this series, carbon dioxide is toxic; it can kill.

A CO2 scrubber  keeps the recirculating CO2 levels low by chemically absorbing exhaled CO2. However, the scrubber has a finite lifetime – it can only absorb so much CO2. Once its capacity has been exceeded, CO passing through the canister accumulates exponentially as the diver continues to produce CO2 from his respiration.

The question rebreather divers want answered is, “How much of that bypassed CO2 can I tolerate?” As we’ve discussed in previous posts, 30% CO2 can incapacitate you within a few breaths. I can personally verify that if you’re exercising you may not notice the effect 7% CO2 has on you, until you try to do something requiring coordination. I’d equate it to the effect of drinking too many beers. There is little controversy about CO2 levels of 5-7% being bad for a diver.

For levels below 5-7% CO2, the U.S. Navy has not been real clear. For instance, 2% CO2 is the maximum CO2 allowed in diving helmets. If CO2 were to climb higher the diver would most likely feel a need to ventilate the helmet by briefly turning up the fresh gas supply to clear CO2.

Since at least 1981, NEDU has defined the scrubber canister breakthrough point in rebreathers as 0.5% CO2. That means that at some point, which varies with CO2 injection rate, ventilation rate, water temperature, and grain size of CO2 absorbent, CO2 begins leaking past the canister, not being fully absorbed during its passage through the canister. Once that leakage starts, the amount of CO2 entering the diver’s inspired breath rises at an ever increasing rate unless work rate or other variables change. By the time the CO2 leaving the canister has reached 0.5%, the canister has unequivocally “broken through”.

I pointed out in my last post that even 0% inspired CO2 may be too much for some divers when they are facing resistance to breathing. And all rebreathers are more difficult to breathe than other types of underwater breathing apparatus because the diver has to force his breath through the rig’s scrubber canister and associated hoses. The deeper the dive the denser the breathing gas and the worse breathing resistance becomes.

In free-flow diving helmets like the old MK 5, and the short-lived MK 12, the diver did not breathe through hoses and scrubber canisters. But those helmets had a high dead space and to keep helmet CO2 at tolerable levels a fresh gas flow of 6 actual cubic feet per minute (acfm; 170 liters per minute) was required. The U.S. Navy allowed up to 2% CO2 in the helmet because 1) the helmets did not have a high work of breathing and 2) due to simple physics the helmet CO2 couldn’t be kept very low.

For rebreathers, none of the above apply. A high breathing resistance is inevitable, at least compared to free-flow helmets, and once CO2 starts rising there is nothing you can do to decrease it again, short of stopping work.

In 2000, NEDU’s M. Knafelc published a literature review espousing that the same limit for inspired CO2 which applies in helmets could be used in rebreathers. Nevertheless, in 2010 NEDU’s D. Warkander and B. Shykoff clearly demonstrated that in the face of rising inspired CO2 concentrations work performance is reduced, and blood levels of CO2 rise, in some cases to dangerous levels. More recent work by the Warkander and Shykoff duo have extended those studies into submersion, however those reports are not yet publicly available.

As a result of both physiological theory and confirmatory data in young, physically-fit experimental divers, NEDU has not relaxed the existing definitions of scrubber canister breakthrough, 0.5% PCO2. Furthermore NEDU will adhere to the current practice of using statistical prediction methods to define published canister durations, methods which are designed to keep the odds of a diver’s rebreather canister “breaking through” to no more than 2.5%, comparable to the odds of decompression sickness following Navy multi-level dive tables. Details of this procedure will be explained in later postings.