After the Heart Attack – The Healing Power of Athletic Passions

DSC06084-B2There is nothing quite like a heart attack and triple bypass surgery to get your attention.

Even if you’ve been good, don’t smoke, don’t eat to excess, and get a little exercise, it may not be enough to keep a heart attack from interrupting your life style, and maybe even your life.

Post-surgical recovery can be slow and painful, but if you have an avocational passion, that passion can be motivational during the recovery period after a heart attack. There is something about the burning desire to return to diving, flying, or golfing to force you out of the house to tone your muscles and get the blood flowing again.

My return to the path of my passions, diving and flying, began with diet and exercise. My loving spouse suggested a diet of twigs and leaves, so it seemed. I can best compare it to the diet that those seeking to aspire to a perpetual state of Buddha-hood, use to prepare themselves for their spiritual end-stage: it’s a state that looks a lot like self-mummification. Apparently those fellows end up either very spiritual or very dead, but I’m not really sure how one can tell the difference.

The exercise routine began slowly and carefully: walking slowly down the street carrying a red heart-shaped pillow (made by little lady volunteers in the local area just for us heart surgery patients). The idea, apparently, is that if you felt that at any point during your slow walk your heart was threatening to extract itself from your freshly opened chest, or to extrude itself like an amoeba between the stainless steel sutures holding the two halves of your rib cage together, that pillow would save you. You simply press it with all the strength your weakened body has to offer against the failing portion of your violated chest, and that pressure would keep your heart, somehow, magically, in its proper anatomical location.

I am skeptical about that method of medical intervention, but fortunately I never had occasion to use it for its avowed purpose.

Eventually I felt confident enough to ditch the pillow and pick up the pace of my walks. In fact, I soon found I could run again, in short spurts. It was those short runs that scared the daylight out of my wife, but brought me an immense amount of pleasure.  It meant that I might be able to regain my flying and diving qualifications.

Three months later I was in the high Arctic with good exercise capability, and most importantly the ability to sprint, just in case the local polar bears became too aggressive on my nighttime walks back from the only Ny-Alesund pub.

Stress_test
Stress test, Public Domain, from Wikimedia Commons.

After that teaching adventure, I prepared myself for the grinder that the FAA was about to put me through: a stress test. Not just any stress test mind you, but a nuclear stress test where you get on a treadmill and let nurses punish your body for a seeming eternity. Now, these nurses are as kindly as can be, but they might well be the last people you see on this Earth since there is a small risk of inducing yet another heart attack during the stress test. Every few minutes the slope and speed of the treadmill is increased, and when you think you can barely survive for another minute, they inject the radioisotope (technetium 99m).

With luck, you would have guessed correctly and you are able to push yourself for another long 60-seconds. I’m not sure exactly what would happen if you guess incorrectly, but I’m sure it’s not a good thing.

And then they give you a chance to lie down, perfectly still, while a moving radioisotope scanner searches your body for gamma rays, indicating where your isotope-laden blood is flowing. With luck, the black hole that indicates dead portions of the heart will be small enough to be ignored by certifying medical authorities. (An interesting side effect of the nuclear stress test is that you are radioactive for a while, which in my case caused a fair amount of excitement at large airports. But that’s another story.)

The reward for all the time and effort spent on the fabled road to recovery, is when you receive, in my case at least, the piece of paper from the FAA certifying that you are cleared to once again fly airplanes and carry passengers. With that paper, and having endured the test of a life-time, I knew that I’d pass most any diving physical.

IMG_0645 (2014_06_22 07_00_11 UTC)
Vortex Springs, 2010

Having been in a situation where nature dealt me a low blow and put my life at risk and, perhaps more importantly, deprived me of the activities that brought joy to my life, it was immensely satisfying to be able to once again cruise above the clouds on my own, or to blow bubbles with the fish, in their environment. Is there anything more precious that being able to do something joyful that had once been denied?

DIGITAL CAMERA
A goofy looking but very happy diver sharing a dive with his Granddaughter, July 2014.

 

 

 

 

 

 

 

 

 

 

Separator small

Without a doubt, the reason I was able to resume my passions was because I happened to do, as the physicians said, “all the right things” when I first suspected something unusual was happening in my chest. The symptoms were not incapacitating so I considered driving myself to the hospital. But after feeling not quite right while brushing my teeth, I lay down and called 911. The ambulance came, did an EKG/ECG, and called in the MI (myocardial infarction) based on the EKG. The Emergency room was waiting for me, and even though it was New Years’ eve, they immediately called in the cardiac catheterization team. When the incapacitating event did later occur I was already in cardiac ICU and the team was able to act within a minute to correct the worsening situation.

Had I dismissed the initial subtle symptoms and not gone to the hospital, I would not have survived the sudden onset secondary cardiac event.

The lesson is, when things seem “not quite right” with your body, do not hesitate. Call an ambulance immediately and let the medical professionals sort out what is happening. That will maximize your chances for a full and rapid recovery, and increase the odds of your maintaining your quality of life.

It will also make you appreciate that quality of life more than you had before. I guarantee it.

GoPro, YouTube, and the Need for Speed

Have you ever watched a local sailboat race from the shore?

It’s not exactly an adrenaline-pumping spectator sport. On the boats of course there is plenty of excitement — shouting, sometimes cursing. But from shore, all the on-boat drama is missing.

GoPro cameras have ushered in a new era of taking the viewer into the action. And based on the action that I commonly see on the Internet, that action is not of local sailboat races. It is instead full of speed and thrills. The penultimate example of testosterone-driven thrill-seeking, in my opinion, is the dangerous sport of wingsuit flying, always perilously close to terrain.

The visual rush is not subtle. You are left with the impression that any second you’ll witness a fatal crash. You leave the video thinking that the flyer is one very brave, very skilled, and very lucky person. Or else you just think they’re CRAZY!

But honestly, I’d love to be that crazy— just once anyway.

When I watch such videos on YouTube I get the sense that I am a spectator at a blood sport event. There is beauty and grace which I admire, but ultimately I know there is a risk to the participant, as evidenced occasionally by the literally rib-splitting, pink mist endings to some of those flights. We enter into the action, but comfortably in front of our TV or computer screens with no personal risk to ourselves.

Arguably we are really not so different from the crowds at the Gladiator games, or for a more modern though fictional example, the Hunger Games.

What I like about the new class of miniature, high-definition video cameras is that they allow us to video what we love doing and then share it with the world. That’s nice, but unless what you do is high speed, endearingly cute, or down-right funny, it may be difficult to attract viewers.

I’ve uploaded flying videos, including the high-definition video below, but they are not exciting. Instead, they appeal, I think, to those who simply love flight: the visual sensations of landing, of entering clouds or skimming cloud tops. That type of flight is the way the FAA expects pilots to fly — safely. Yet safe flight is also capable of generating visual sensations that secretly thrill even highly experienced pilots, and keep them in love with their profession.

On the other hand, the adrenalin-packed videos that high-definition cameras provide can entice some pilots to fly unsafely, simply to titillate the cameraman and the viewer. I suspect the pilot in the following video got a high viewer count but I also suspect his wings are about to be clipped by the FAA.

I am very unlikely to engage in risky flying simply because it looks thrilling when posted on the Internet. I want to keep my license; it is a treasured privilege to be able to fly. But also because I’ve lived long enough to know it is quite a different thing to watch a Miss Universe pageant, and quite another to entertain a pageant contestant when she shows up unexpectedly at your door. The thrill may be more intense in the latter case, but the personal risk may be far greater; especially if your significant other meets her at the door.

Sailboat race photo by Lewis Westwood Flood on Unsplash

Going to HEVVN

I know where HEVVN is. I have coordinates for it.

I’m serious.

“HEVVN” is the politically correct, government approved spelling for a place pronounced, as you might expect, “Heaven”.  I’ve been there, and I could go again today if I wanted. But since I’m still a living, breathing person I can’t stay there.

It should come as no surprise to you that HEVVN is not a town or city; it’s nowhere on land. It’s not an island: it’s not on the water. It can best be described as an ephemeral place somewhere in the “air”; in space if you will.

Theoretically, an infinite number of people could be at HEVVN all at the same time, without actually being at the exact same place at the same time. There is, in other words, considerable spatial ambiguity, uncertainty, about where one might be in HEVVN. In an earthly sense, two people at HEVVN might be miles apart, not even able to see each other, not even aware of each other’s presence.

I would guess that on a typical day, thousands arrive at HEVVN: on a slow day, maybe merely hundreds.

If the government admits to a HEVVN, does it admit to a HELL? Well, not exactly. But it does admit to a SATAN.

But don’t worry – if you’re at HEVVN, you won’t be anywhere near SATAN. HEVVN and SATAN are a thousand miles apart.

I’m still being serious…really.

 

 

HEVVN intersection lies in the center of the blue donut. Click for a larger image.

Are you confused? Well, here’s an explanation. HEVVN is a Federal Aviation Administration defined airway intersection used, along with an assigned altitude, to define an aircraft’s position. HEVVN lies roughly ten miles off the coast of the Florida Panhandle, and connects the major flyways of the Florida Panhandle and the north-south air corridors of the Florida penisula. Theoretically many aircraft can simultaneously be at HEVVN, as long as they are separated by at least 500 feet in altitude.

SATAN is a wicked sounding GPS fix a few miles north of the Portsmouth International Airport at Pease Tradeport near Portsmouth, New Hampshire. I am surprised Portsmouth would allow itself to be associated with such a diabolical name, but perhaps the government never told the city elders before it was too late to change the name. Or perhaps the word SATAN no longer engenders the fear and loathing it used to.
SATAN intersection (red triangle). Click for larger image.

Oddly enough, SATAN is included in a much more innocent sounding group of GPS fixes, those defining a GPS approach to runway 16 at Pease Airport.  When cleared for the GPS 16 approach coming from the west, the aircraft is expected to follow sequentially a route to the airport using up to five GPS fixes. Those five fixes, including the two “missed approach” fixes used in case a pilot can’t find the runway due to low clouds, are named thusly:

ITAWT  ITAWA  PUDYE  TTATT  …  IDEED.

Apparently someone at the FAA has a sense of humor.

If you’re not laughing, you might want to say those five words in quick succession. If you’re still puzzled, try repeating it with your best Tweety Bird impression.

After the FAA named a point in space SATAN, someone must have decided some comic relief, à la Warner Brothers, was needed. And a famous quotation from the canary named Tweety Bird somehow seemed appropriate.

After all, Tweety Bird can fly. Right?

 

 

 

 

 

Diving Accident Investigation

Diving helmets waiting for accident investigations. Click for a larger image.

Compared to aircraft accident investigations, diving accident investigations are often ad hoc in nature, poorly conceived and poorly funded. Nevertheless, these investigations are just as important for the safety of the diving public as are similar investigations for the flying public. Unfortunately, no national regulations presently address how investigations of diving accidents should be conducted: volunteer investigators have no legal status for extracting information about an accident, and they have no legally binding protection from litigation based on the conduct of their investigation or on its results. That is, no business case can be made for conducting diving accident investigations, in spite of the moral authority for conducting them.

With the conviction that this untenable situation must eventually change, this presentation will describe one approach to diving accident investigations with particular emphasis on rebreathers and will draw some comparisons to aviation accident investigations by the National Transportation Safety Board (NTSB).

Aircraft accident investigations

The "black box" containing data recorded just prior to, and during, a commercial aircraft accident.

Pilots know that if they are involved in a fatal crash, the NTSB will investigate the accident by examining in excruciating detail everything those pilots did for hours, perhaps even days or weeks, leading up to that accident. It will investigate how often they called flight service to check on the weather. The NTSB will go through those pilots’ personal logbooks to check on their currency and proficiency, and it will check Federal Aviation Administration (FAA) records for a history of violations. NTSB investigators will also examine an aircraft’s logbooks to scrutinize its maintenance records. They will play back voice and radar data, and if a data recorder is available, they will analyze its contents.

Then they get personal. The NTSB and its FAA counterparts will talk to mechanics, surviving passengers, and friends to ask questions such as, “What were the aviators’ attitudes toward flying? Were they cavalier? Did they take unnecessary risks, or were they careful and methodical?”

Accidents happen.

Due to the detailed, scripted nature of NTSB procedures, the investigation may take up to a year to complete.

A few years ago a pilot’s engine failed and he was forced to make a water landing just off a beach. The ditching should have been survivable, but he lost consciousness on impact and sank with the airplane as it settled to the bottom in relatively shallow water. He drowned.

If he had been a diver, that would have been the end of the story. The public judgment would have been, “A diver drowned. He tried to breathe underwater; this is what happens.” But this victim happened to drown inside an airplane. So instead of the medical examiner simply saying that he drowned, the NTSB started its very thorough investigation procedures.

Fortunately, the pilot also had a surviving passenger. From the survivor’s statement, the aircraft’s maintenance records, and the mechanic’s testimony, an ugly story of reckless disregard for the most basic safety rules of flying began to emerge.

Do divers ever show a reckless disregard for basic safety rules? You bet. It’s unfortunate that the pilot died, but the events leading to his death were a useful reminder that the media in which we work and play, high-altitude air and water, are not forgiving. Humans are not designed for flying or diving, and nature only begrudgingly lets us trespass — on its terms.

The U.S. Navy and Coast Guard are chartered to investigate diving accidents. Unfortunately, there is a huge discrepancy in the number of personnel and the amount of funding for aviation accident investigations compared to diving accident investigations. The NTSB has hundreds of personnel and tens of millions in funding available, whereas the entire U.S. Navy has at most a handful of investigators with no investigation-specific funding.

Investigation team requirements

In the best of all worlds, an investigation team should have access to both a manned and an unmanned test facility, access to experts in all diving equipment (scuba, rebreathers, helmets), and the ability to conduct and interpret gas analyses — sometimes from minuscule amounts of remaining gas. At a minimum, such a team needs the ability to download and interpret dive computer/recorder data. Some investigations may require the simulation of UBA-human interactions for “re-enactment” purposes. An investigation team should also have diving medical expertise available to review medical examiner reports for consistency with known or discovered facts regarding the accident. Last, it should have in-depth knowledge of police investigative procedures, particularly of the procedures and documentation for maintaining “chain of custody”.

Do rebreather investigations have a future?

Considering the resources and time-frames required for laboratories such as the Navy Experimental Diving Unit (NEDU) to conduct diving equipment evaluations on a limited set of accident cases, and the unfunded costs associated with those investigations, it is difficult to imagine a resolution to an ever-increasing need for rebreather investigations. Almost certainly, no independent federal agency similar to the NTSB will ever be responsible for investigating diving accidents, simply because diving accidents lack national attention: the public at large is not being placed in jeopardy.

It is also unlikely that diving equipment manufacturers would welcome federal agency oversight and regulations comparable to those engendered by the FAA and NTSB. Diving might become exorbitantly expensive. For instance, if a $5 part available for purchase in an automotive store were to be used in an aircraft, it would become a $50–$500 part because of FAA required  documentation that it meets airworthiness standards.

The U.S. Coast Guard initiates diving accident investigations and in some cases conducts hearings into those accidents; however, with its enhanced role in Homeland Security, the Coast Guard is unlikely to welcome any efforts to diversify its mission. The cost/benefit ratio would appear to be too great.

For the future, as Dick Vann of DAN has suggested, the resolution may ultimately depend on rebreather users funding a team of dedicated, professional accident investigators. The cost of conducting worthwhile investigations has yet to be determined, and therefore the amount of funding needed to support it is unknown. I suggest that obtaining those estimates should be a priority as we, rebreather users and the industry, decide the next steps in investigating rebreather accidents.

 

The above are highlights from this author’s publication of the same name, found in: Vann RD, Mitchell SJ, Denoble PJ, Anthony TG, eds. Technical Diving Conference, Proceedings. Durham, NC: Divers Alert Network; 2009; 394 pages. ISBN# 978-1-930536-53-1.

This book is available for download at no cost as a PDF file from the Divers Alert Network website (http://www.DiversAlertNetwork.org/or from http://archive.rubicon-foundation.org/8300