Great Balls of Fire, Plasma

The first impression from the Fire Chief was that my childhood home had been firebombed.

The Event

As my Father headed home one afternoon in 1958, he had left behind the hectic traffic of Kansas City, Kansas. He was approaching the bedroom community of Prairie Village, Kansas, when he had to stop as a procession of fire trucks, sirens wailing, pulled into the road ahead of him.

Once traffic was moving again, he remained behind the fire engines. They happened to be headed his way. A few minutes later, the speeding trucks made a quick turn to the right as they entered a community of neatly shuttered Cape Cod homes less than ten years old. Coincidentally, that was where he needed to turn.

The vehicles slowed only slightly as they entered quiet residential streets. Young children leaving a nearby elementary school stared at the noisy procession. But oddly, the firemen were still heading in the same direction my Father needed to go.

He could now see smoke in the air as he approached within a quarter-mile of our home. And then, he shuddered as he watched the trucks turn up our street. Seconds later, he watched the trucks stop in front of our house, the Cape Cod house with a dense gray cloud of smoke billowing from it.

As he parked as close as the fire trucks allowed, he saw far more smoke than flames. Some would think that was a good sign, but he knew from painful experience just how deadly smoke can be.

When he was a teenager, he lost his Father to smoke inhalation in a hotel fire. So now, he was close to panic. His wife, my mother, had been alone in the burning house.

At first, all he could focus on was firemen dragging hoses through the open front door and smoke pouring out the door into the front yard. Then with great relief, he saw Mom standing on the opposite side of the street, surrounded by handfuls of neighbors. She ran towards him, seemingly safe, but of course, shaken.

Fortunately, she had been in a front bedroom when the stove exploded. She managed to escape out the nearby front door.

Modern-day photograph of the living room and front entry of the house. The open door to the front bedroom can be seen across the hallway. The kitchen and dining room are to the right of this photo.

Aftermath

Something had detained me that day, either my safety patrol duties or the principal. I don’t remember which. As I turned up my street, an excited boy about my age, twelve, announced that I had missed a “cool” fire. But as I walked up the road, I saw that I was about to witness the fire’s aftermath, up close and personal.

The dining room was a mixture of charred furnishings and wet soot dripping down the walls. The glass in a window facing the back of the house had been shattered, leading to the initial assessment that an incendiary device had been tossed into the house.

The adjoining kitchen also had some fire damage, which was strangely limited. A charred path rose up to the ceiling from behind the stove and then angled over to the back door. Reaching the back wall, the path turned downward. One side of a curtain framing the glass in the back door was incinerated, a few blackened strands of cloth left dangling. Only a foot away, the right-side curtain panel was untouched.

A plastic wastebasket sat at the back door just underneath the left curtain panel. Oddly, the half of it closest to the door had been melted into a dark puddle. But the other half of the wastebasket was undamaged. The degree to which the heat had exacted its cautery was almost surgical.

Only two feet away from the strangely cleaved wastebasket was the open door that separated the kitchen from the dining room. Although the dining room was blackened by fire and smoke, the kitchen was largely unaffected, except for that curiously defined path of charred paint.

On top of the stove was a squat cylinder that filtered and stored bacon grease. Although the fire chief was suspicious that the bacon grease container might have been the source of the fire, its contents were untouched.

The grease can was topped by a handle made of black Bakelite plastic, somewhat like the one pictured below.

Strangely, exactly half of that knob was charred, the side facing the back of the stove. However, the side facing the room was untouched. One side of the knob was briefly exposed to intense heat, while the other was not.

Discovery

When the fire investigator pulled the stove away from the wall, they saw that the 220-volt wires had shorted out. He suggested that imperceptible vibrations coming from the ground, or the effect on the house’s wooden framing of sometimes-violent Kansas winds, had caused the two large loops of high amperage copper wire to rub together.

That rubbing slowly chafed through the asbestos insulation separating them. The investigator guessed that the wear was imperceptibly slow until, at last, the power lines arced. Violently.

It has taken most of a human lifetime to explain what happened that day.

When 220-volt lines arc to ground, there can be an instantaneous current of several thousand amperes surging through the wires until the screw-in fuses of the era blew, robbing the circuit of power. But the damage had already been done.

1950s era screw-in fuse box

In the intervening moment before the loss of power, the arc generated enough heat to cause a plasma of ionized copper atoms and suddenly freed electrons. The copper wires were not just melted; they were vaporized and turned into a chaotic ball of superheated positively charged atomic nuclei and negatively charged electrons.

Image Credit: Caroline J. v. Wurden and Glen A. Wurden, Los Alamos.

Enriching the copper plasma was plasma from the air itself, nitrogen, and oxygen. You see, at plasma temperatures of thousands of degrees, electrons are ripped off molecules. Vaporized insulation would also have joined the ball of plasma.

A model of our Prairie Village kitchen, with an artist’s impression of a plasma ball rising from the back of the electric stove.

The 4th State of Matter

Plasma is said to be the fourth state of matter (solid, liquid, gas, plasma). Arguably, it’s the most common state of matter in the universe. You can buy your own “plasma ball” as an object of curiosity for your home, like in the photo below. However, an unconstrained ball of plasma is altogether different. It’s not a good thing to have running loose inside your home.

Photo by Solstice Hannan on Unsplash

Due to its incredibly high heat, plasma becomes buoyant, rising in the air. As the fire investigator noted, the approximately 8-inch-wide path of charred paint in our kitchen made it easy to follow the plasma’s path as it rose up the wall behind the stove.

Upon reaching the ceiling, the upward momentum of the seething ionic mass was diverted across the kitchen ceiling, angling towards the back door. Like a billiard ball ricocheting off the edge of a pool table, the sun-like ball then careened downward, incinerating the left-most curtain on the door and consuming half of the plastic wastebasket lying directly below.

Upon encountering the tile floor, the ball’s momentum carried it at a right angle through the open door and into the dining room.

Once there, the plasma ball exploded.

The entire house would have burned down were it not for the fast response of the firefighters. If the house had been fully involved in the fire, the charred trail in the kitchen would have been destroyed. That trace is what provided evidence of the passage of a buoyant ball of sun-hot plasma.

Short Circuit Demonstration

To explain the physics of short-circuits, the following images are helpful. They were screenshots from the Warped Perception YouTube Channel and the video titled, Fuse vs. Circuit Breaker Which Blows Faster (Slow Motion).

The next two frames from the video involved crossing wires attached to 110-volt wiring and a circuit breaker.

A high-speed camera was used to capture the time course of plasma generated by short-circuiting the copper wires. Shown below, the initial vaporization of the short-circuited copper wires produced the greenish-blue coloration expected for copper plasma. The contacts in the circuit breaker (inside the white circle on the lower left of the image) had not yet separated.

In the next frame, within a few milliseconds of plasma initiation, the circuit breaker contacts had opened, and the plasma started interacting with the surrounding air, creating a yellowish-white light. With the circuit broken, the current source had been removed. However, the plasma continued to grow, changing color as air and other things became ionized due to the extreme but highly localized heat.

 Because of the relatively low 110-volts, the resulting plasmas were slight in comparison to the amount of thermal, electrical, and magnetic energy that must have been created in our stove’s 220-volt short-circuit. So, imagine an instantaneous current of several thousand amperes creating a ball of plasma almost a foot wide, shooting with a large bang out of the back of the stove.

Event Illustration

In the following sequence of illustrations depicting the kitchen and dining room of the house, the path of the plasma ball is marked by a trail of soot.

The damage in the kitchen was limited to a small fraction of the room. Once the ball of plasma rolled along the floor into the dining room, fiery chaos ensued.

An approximation of the dining room before the fire. The living room, seen through the opening on the right, suffered only smoke damage.

The Enigma

Plasmas caused by either electrical shorts or other energy sources such as microwave ovens can generate temperatures over 6000 K.  However, typically those hot plasmas disappear rapidly once power has been removed. Such plasmas do not form a ball that travels across a room. Yet, if we were to believe the experienced fire investigator and our own eyes, that is precisely what happened in our house. It was undeniable that the kitchen range had exploded, but the most significant fire damage occurred in an adjoining room. The kitchen was scarcely touched.

Ball Lightning

There is one type of glowing sphere that can travel some distance while maintaining its luminescence and destructive ability. It’s called ball lightning, a mysterious phenomenon that many scientists still doubt exists. However, within the past decade, hard evidence of ball lightning has been revealed by happenstance.

In July of 2012, a fortuitous observation was made by Chinese scientists J. Cen, P. Yuan, and S. Xue. In 2014 they published their findings in a paper titled Observation of the Optical and Spectral Characteristics of Ball Lightning. Their report was published in Physical Review Letters, a premier physics journal published by the American Physical Society.

One of the first descriptions of the above article in the easily accessible lay press was by the science writer Brian Dodson. His introduction of ball lightning is not only informative but relevant to the incident in our home. He is quoted below.

The reported size (of ball lightning) is usually between 1 and 100 cm (0.4-40 in), with the most common size being 10-20 cm. They do not tend to be extremely bright, usually appearing rather like an incandescent lamp in surface brightness. Colors include red, orange, and yellow.

The balls persist for times between about a second and a minute, and tend to move at a few meters per second, often, but not always, horizontally. They seem to be able to pass through closed doors and windows, and even penetrate areas which are usually proofed against lightning. Their final decay is usually rapid, and can range from benign to rather large explosions.

After that introduction, Dodson described what the Chinese scientists had observed.

Physicist Ping Yuan and his team from Northwest Normal University in Gansu Province, China, had positioned spectrographs to investigate lightning on northwest China’s Tibetan Plateau. They recorded both a spectrum and a high-speed video of a ball lightning that appeared following a cloud-to-ground lightning strike which struck about 900 meters (3,000 ft) from their spectrographs.

While the apparent size of the glow on the spectrograph was about five meters (16 ft), the physicists report that the actual size of the ball was “much smaller,” bringing the observation into accord with historic reports. The color of the ball changed from its initial white to a reddish glow during its persistence of just over a second. It was observed to drift horizontally about 10 meters and ascend perhaps 3 meters during its life.

Data

The spectrograph revealed prominent spectral lines from silicon, iron, and calcium, expected constituents in vaporized dirt.

Sand is primarily silicon dioxide, with two oxygen atoms bound to a single silicon atom. According to at least one source, a self-sustaining plasma can form when a high-voltage spark and the heat from copper plasma (from the shorted wires), drives oxygen ions away from the silicon atoms. The plasma ball can somehow be sustained and even grow when oxygen from the air reenters the plasma during the short lifetime of the plasma ball.

The Asbestos Connection

 For many years, asbestos was used as insulation on wires due to its strong thermal and electrical insulating properties. Without a doubt, an electric range manufactured in 1950 would have had asbestos-based insulation on the 220-volt wiring. The use of asbestos in stoves was essentially banned in 1977, twenty years after the fire.

The most common and useful form of asbestos, Chrysotile or white asbestos, is a hydrated magnesium silicate with the chemical formula 3MgO·2SiO2·2H2O. From the known atomic ionization energies, we know that if there is enough spark-energy to ionize oxygen, then there is more than enough energy to ionize both magnesium and silicon atoms.

Since J. Cen et al. discovered the spectra of silicon in ball lightning, it is reasonable to assume that both magnesium and silicon were in abundance in our plasma generated from asbestos-insulated copper wiring.

Nexus

The facts of the plasma ball’s track and the eventual explosion were readily apparent to the trained eye of the fire investigator back in 1958. However, it seems that the knowledge of how such a fireball could travel from one room to the next and eventually explode could not have been known until recently. Thus, it has taken most of a human lifetime to perhaps explain the bizarre events of that day.

I am curious about an overly simplistic nexus combining the known features of high-temperature plasmas and ball lightning. We now know that naturally occurring ball lightning generated from ground strikes emits the light spectra of vaporized silica. The most common form of asbestos insulation contains equal parts of silicon and magnesium. I wonder, could vaporized asbestos have been partially responsible for creating a long-lasting but contained ball of plasma—in my house?

Of course, before being taken seriously, this guess about the potential role of asbestos insulation in short-circuited 220-volt wiring really should be tested in a laboratory. While I would love to see a demonstration of that potentially naïve hypothesis, let me state the obvious. This would be an inherently dangerous experiment.

It would have to be conducted under carefully controlled conditions by fire and electrical hazard-wise professionals. It might also be prudent to have firemen and EMTs standing by, just in case.

My Respiratory System is So Embarrassed

stk85284cor
Royalty free image from Punchstock.com

“Respiratory embarrassment” is an uncommon phrase most likely spoken by physicians and physiologists.

This week I found myself telling an engineer that “respiratory embarrassment can lead to an untoward event”. It quickly became apparent from the puzzled stare I received that I was not communicating.

Scientists and some medical personnel tend to do that; fail to communicate. In fact, they do it a lot.

What I was really saying is that in the right circumstances a person could have difficulty breathing, and that difficulty could cause something bad to happen; an “untoward” event. That bad thing would not necessarily be an aircraft crash, or in the case of a diver, a drowning, but it would mean that the pilot’s or diver’s performance would be impaired.

Why didn’t I just say so?

Laziness I suppose. I was using the language clinicians and physiologists are taught in graduate or medical school, and it flows out of our mouths naturally, without effort. Translating those same words into laymen’s terms takes time and effort.

I next started talking about respiratory impedance, a term understood by some but not all engineers, and rarely if ever by laymen. So once again I was not communicating well with all of my audience which was composed mostly of engineers, but not entirely.

That was the case until I used pictures to explain the otherwise difficult concepts of respiratory impedance and physiological embarrassment. The images below seemed to work, so I thought it worthwhile to share those images with you.

For you engineers, respiratory impedance is proportional to the sum of respiratory flow resistance and pulmonary and chest wall elastance.

pb-110104-buried-shulman_photoblog900
From Shulman photoblog.

So what is that?

Well, for elastance, at least chest wall elastance, think of being buried to your neck in sand. Breathing difficulty comes from the difficulty of moving your chest wall in and out with the weight of sand pressing in on all sides. The pressure of sand impedes your breathing, hence elasticity (the inverse of compliance) is a major component of respiratory impedance.

Based on the photo of the young man pictured on the right, being partly buried for supposedly therapeutic reasons is not a pleasant experience.

Some might disagree. The man on the left is an actor in the 2008 French short film Le Tonneau des Danaïdes by David Guiraud, who seems quite at ease impeding his breathing for the sake of art. I’m guessing he’s either very dedicated, or very well paid.

PIC3_LE_TONNEAU_DES_DANAIDES

In diving, respiratory elastance can be elevated by tight fitting wet suits; in aviators by tight fitting chest pressure garments, and in patients, by pulmonary fibrosis brought about by, for example, asbestos exposure.

Another key component of respiratory impedance, that thing that causes respiratory embarrassment, is flow resistance. Sticking your head in the sand would certainly be one way of generating

head-in-sand
This image is found randomly throughout the web without attribution. The original source is unknown.

severe respiratory resistance, with its attendant embarrassment.

out-of-breath-286x300
From news.menshealth.com

Clinically, there are far more common sources of respiratory resistance, for example the narrowing of air passages in the lung caused by asthma. (Sticking your head in sand is probably a reasonable analogy to the sensations experienced during an asthma attack.) Chronic obstructive pulmonary disease (COPD) can also lead to a significant increase in respiratory resistance.

asthma

When you focus on the human respiratory system, the body parts shown in pink below, keep in mind that breathing can be impaired by things occurring inside the body (like asthma, COPD, fibrosis) or outside the body. Any life support system used for aviation, diving, mining, or firefighting imposes an impedance on breathing. That impedance in turn can lead to breathing difficulty, which can result in a failure to complete assigned duties.

Perhaps that’s where the “embarrassment” part comes in.

Created on www.biodigitalhuman.com ©2012.