Outsmarted by an Octopus

Jim Duran and I started a night dive in about sixty to seventy feet of water several miles off the beaches of Panama City, FL. I was wearing double 80 tanks, held a collecting bag and lights, and fully intended to capture an octopus, alive.

At the time I was working in an invertebrate physiology laboratory at Florida State University, under the mentorship of Dr. Michael Greenberg. I had been impressed by the reputed high intelligence of the octopus and was also interested in the effects of high pressure. The Navy base at Panama City had a new high pressure chamber, capable of simulating deep-sea pressures. Since I was in training in the combined Navy and NOAA program called the Scientist in the Sea, it seemed logical to me to catch an octopus and study it to see if it would be a suitable candidate for testing in the Navy’s giant hyperbaric chamber.

Navy Experimental Dive Unit, Panama City, Florida

It sounded like a reasonable plan to me, and Jim Duran was willing to follow along as my assistant critter catcher. And to begin with, the plan worked. We spied our quarry only a few minutes into the dive. The gray-brown octopus was crawling over the sandy bottom and initially seemed unaware of our intentions. But as the two of us closed in on him, specimen bag flapping in our self-generated current, he sprang off the bottom and squirted away.

But we were strong swimmers, and our quarry was in the open, maybe eight feet off the bottom. He had nowhere to hide – silly thing. Keeping our lights on him, and stroking like mad, I began gaining on him, at which time he let loose with his ink. I was prepared for that, and continuing to kick I soon caught up with him and got my hands on him, trying to stuff him into my bag. But he would have none of that.

Off we went again. What we didn’t realize was that the clever invertebrate was constantly turning to our right. We of course were too intent on capturing him to notice his strategy. And besides, invertebrates were incapable of strategic planning – or so we thought.

Apparently, the octopus was determined not to be touched again, or else we were tiring, for we never quite caught up with him. So close, and yet so far away.

And then a curious thing happened. He collapsed his tentacles upon themselves, streamlining his body shape, and shot like a rocket from our depth to the sandy bottom. Once on firm ground again, he spread his tentacles as wide as he could, and his entire body turned white. I froze in shock.

In another instant, before I could recover my senses, he collapsed his body down to the width of an apple and slithered into his hole in the sea floor.

He was gone.

It didn’t take long for us to realize that the chase had started near his home, and he had led us at a furious pace in a large circle, which ended precisely where it had begun. He had maneuvered us to within striking distance of safety.

Humbled, and now growing low on air, and embarrassingly empty-handed, we headed back to the off-shore platform where our dive had begun.

It had seemed like such a good idea. Who knew that two graduate students would be outsmarted by an invertebrate.

Below is a link to a video showing an octopus’ ability to disguise itself, and some of the defensive behavior we witnessed.

Purple octopus photo by Diane Picchiottino on Unsplash

Liquid Breathing – It’s Not As Easy as It Looks

Who can forget James Cameron’s movie The Abyss!

If I need to remind you, Cameron is the creator of Avatar.

The Abyss was an imaginative movie of the 1980s, where the plot concerned commercial divers who had been hired by the Navy to assist with the salvage of a nuclear submarine. It involved very deep diving, and special technology that actually has some basis in fact.

By far the most memorable part of the movie involves a diving helmet filled with a liquid that the diver, with some trepidation, breathed.

Below is a clip from the movie that demonstrated, quite dramatically, and with a live animal, the concept of liquid breathing.

It’s not a trick – it really works, on small rodents.

In the 1960s and 70s the Office of Navy Research funded basic research at Duke University on liquid breathing, with Dr. Johannes A. Kylstra as the lead scientist on the project. After proving the technique worked on rodents and dogs, it progressed to the point of having a commercial diver, Frank Falejczyk, become the first person to breathe oxygenated liquid.

First, Frank inhaled well-oxygenated saline on an operating table. Unfortunately, extraction of the liquid from his lung did not work as planned. He developed pneumonia as a result of the exposure. But eventually, the researchers found that oxygenated perfluorocarbons could be tolerated by the lung, and could, at least in animals, allow the extraction of dissolved oxygen for a period of time without ill effects.

Eventually, Falejczyk made a presentation on his trials to an audience that happened to include James Cameron.  Apparently, Cameron was impressed.

So, can man breathe liquid and not drown? At least one retired physician says yes. Arnold Lande, a retired American heart and lung surgeon, has patented a scuba suit that would, he suggests, allow a human to breathe oxygenated liquid.

http://www.independent.co.uk/news/science/into-the-abyss-the-diving-suit-that-turns-men-into-fish-2139167.html

Now, making such a device work is in fact a tall order. Although Kylstra’s animal experiments showed that rodents and even dogs could be ventilated for up to an hour, the limiting factor seemed to be the accumulation of carbon dioxide in the body. The perfluorocarbons gave up their stored oxygen readily, but did not adequately eliminate carbon dioxide.

That is a major problem.

In the 1980s an Israeli colleague and I conducted biomedical research on potential Navy applications of high frequency ventilation (HFV), an unusual method of mechanical ventilation that now has many clinical applications. It soon occurred to me that appropriate frequencies applied to the mouth or chest wall could greatly accelerate the diffusion of carbon dioxide in liquid, just as it did in air. However, I never proposed studying liquid ventilation, and if I had, the proposal would likely have been rejected almost immediately on the basis of Frank Falejczyk’s bad outcome.

Dr. Lande has proposed solving the carbon dioxide retention problem by tieing artificial gills straight into the human circulatory system. There are obvious safety concerns with such a plan, but if those concerns could be engineered out, there is still the problem of creating working gills with enough throughput to eliminate CO2 from a working diver.

I once witnessed a demonstration of an artificial gill, conducted in front of several well-educated Navy diving physicians and scientists. After descending about three feet down into a pool, the “inventor” lay motionless for 30 seconds, then bounded up out of the water, breathlessly saying, “Basically, it works.”

His panted words were not convincing.

Based on fairly recent history, and the fact that for deep diving, not one lung but both lungs would have to be completely filled with perfluorocarbon or similar liquid, it seems that a practical and safe liquid breathing system will be a huge engineering challenge. I can envision ways that it could be done, but at what cost, and for what purpose?

I am mindful, being an aviator, that such questions were not allowed to stymie Wilbur and Orville Wright. However, these days, human experimentation involving the complete filling of human lungs would face a formidable hurdle, called the Human Use Committee.  In the U.S. at least, a repeat of Kylstra’s experiments is very unlikely to be approved by Research Ethics committees.

But could it happen in other countries with lessor human research safeguards?

Time will tell.

My Top Three Diving Sites: Herod’s Port, Caesarea

Visibility was lousy that day, which made the dive just that much more exciting.

I and some U.S. Navy SEALS were cruising in shallow water searching for antiquities, when out of the gloom appeared, fuzzy at first, and then with startling clarity, a fluted Roman column lying on its side. The effect was stunning.

We were diving in Caesarea, the location of one of the finest Mediterranean ports ever built before and during the time of Christ – designed to compete with the contemporaneous port in Alexandria, Egypt.

Two SEALS, two diving scientists, and a physician.

As we swam on, we encountered large frames made of hydraulic concrete, with remnants of wood still embedded within them. I could barely believe what I was seeing! The Romans had concrete, and used it underwater?

Well, there it was. And imbedded within the concrete remained some of the original wood used within the frames.

I’ve since learned that Roman engineers used a type of hydraulic cement called pozzolana. According to a local maritime historian,

“The Romans found that when they took the volcanic powder found around Mount Vesuvius and mixed it with lime and rubble, the substance hardened in water.” … “This ‘hydraulic concrete’ was imported to Casearea and used to fill wooden frames which were then lowered into the water to lay the foundations for the port.”

At the time of our visit, the diving site was not yet open to tourists, but now it is the site of an underwater museum, through a concerted effort of archeologists and historians.

Which worries me a little. You see, on that dive I didn’t have as much weight on my weight belt as I should have, so I picked up a stone and carried it around with me throughout the dive. Of course as I surfaced from the shallow dive I left the rock on the bottom, somewhere. If that stone had some archeological significance, the information about its placement, relative to the rest of the sunken port, was destroyed by my use of it.

I can only hope that it was a ballast stone from one of the many merchant vessels visiting that port two thousand years ago. That it should serve as my personal ballast stone feels fitting somehow. It was perhaps a connection tying me to ancient mariners.

Or else, it was just conveniently located junk. But, I can imagine, can’t I?

As of 2006, Herod’s Port has been accessible to tourist divers as an Underwater Museum. Now anyone can dive there, with the benefit of waterproof underwater maps and well marked archeological artifacts.

Caesarea is not your usual diving location, but it is important enough, historically, to make it into my top three.

My Top Three Diving Sites: The Red Sea Pt. 2

I was one little inch away from BIG trouble.

Twenty kilometers north of Sharm el-Sheik are four current-swept reefs that attract Red Sea divers and bountiful sea-life alike. We left for the dive site from Ras Nasrani, heading for Thomas Reef, in the middle of the current-swept Straits of Tiran.

Thomas Reef is the smallest but most popular reef for diving. Because of the current, it requires a different diving technique than the simple but awe-inspiring wall dives at Ras Mohammed. Our dive boat with some diving professionals and tourists onboard anchored just off  Thomas Reef  and quickly had its bow swept into the current.

The plan was to enter the water from the stern, and follow the anchor line down to a point where we could kick like mad and make our way to coral encrusted rocks. From there, it would be a fairly short swim against the current, using the rocks for assistance, until we entered the calm water in the lee of the reef.

Thomas Reef provides a unique dive site due to the sea life attracted to the current. Because of that, it is well worth negotiating the heavy flow; rewards awaited the determined diver. In my case, a surprise awaited me as well.

As I let loose of the anchor chain, I could clearly see the steeply sloping bottom features of the reef, where I was headed. I spotted my target rock and kicked mightily until it was in my grasp. Now anchored, I had time to survey the beauty around me, and plan my next step. It was then that I noticed that an inch way from my naked right hand, the one firmly grasping the rock, sat not just another stone, but a stone with eyes.

It was in fact, something far more dangerous than a stone —  it was a stonefish.

Red Sea Stonefish

Stonefish are reputed to be the most venomous fish in the world. Had I grabbed it instead of its stony neighbor, glands at the base of its many dorsal spines would have flooded my bare hand with venom. The sting causes intense pain; with the affected body part swelling rapidly, potentially leading to death of tissues.

Just how bad the symptoms become depends on the anatomical location of the punctures, depth of penetration and the number of spines involved. The effects of the venom are muscle weakness, temporary paralysis and shock, which, if encountered during a scuba dive in a strong current, could make a safe return to the dive boat somewhat  difficult. If not treated, the incident could prove fatal.

The emergency treatment required is  much more than is likely to have been available on a chartered dive boat. As breathtaking as a Red Seas trip promises to be, you might stumble across critters that can take your breath away, literally. So a check of the closest and most capable medical facility should be high on your pre-dive checklist.

No doubt about it, if I had grabbed the wrong “stone” I would have been in a world of hurt; and probably in a lot of trouble with my dive buddies as well since that trip would have been brought to a sudden and exciting conclusion.

Oh yeah, once I overcame my surprise, and moved on, ever so carefully to the lee of the island-like reef, the experience was everything I had come to expect from the Red Sea.

Highly recommended!

My Top Three Diving Sites: The Red Sea, Sharm el-Sheik

I’ve read a couple of books lately where the author, critically injured in an accident, experiences what seems to be a visit to heaven, followed by a swift return to Earth.  The most recent such book was Flight to Heaven, by CAPT Dale Black, a plane crash survivor.

A common theme in these books is that the author finds colors in Heaven to be much purer and vibrant than any colors seen on Earth. Well, I know a place just like that, and for a diver it must indeed be heaven on Earth. It’s called the Red Sea.

Sharm el-Sheik and Ras Muhammad are located on the southern tip of the Sinai Peninsula, where the Gulf of Suez and the Gulf of Aqaba meet the Red Sea. On my first dive at Ras Mohammed, as I sank below the water’s surface I saw a wall of color that defied description. The phrase, “a riot of color”, is a cliché, but that is what I saw. It was as if every inch of the reef was shouting for attention, clamoring to be the most colorful, the most interesting piece of rock ever created. I was stunned — in sensory overload from the beginning to the end of that dive.

At Ras Muhammad, the coral encrusted wall dropped at a dizzying angle, headed for depths of 3000 feet, 1000 m, a very short distance from shore. I had planned a dive to no more than sixty feet, where the natural light was bright enough to show off the colors cascading downward, towards what seemed to be a bottomless abyss. But at sixty feet I saw a never ending waterfall of fauna, just a few feet below me, and then below that, even more. The colors were still spectacular even at that depth, defying all the laws of physics as I understood them.

When I realized I was twenty feet below my planned dive depth, a curious thing happened. I stopped searching for the next most beautiful thing, stopped my descent, but for a few moments I had an almost overwhelming desire to throw rational thought aside and continue down into the abyss.

I understood the consequences of that action, had I continued deeper, but the experience in that moment seemed to transcend my worth as a human being. The living communal organism, and all the life forms sustained by it, clutching close to the wall, seemed to have much greater significance in the whole scheme of things than I did. I felt a kinship, perhaps pointing to our theorized evolutionary beginnings, that made it seem that where I was, was where I belonged.

Napolean Wrasse - Egypt. (Photo credit - Sami Salmenkivi.)

My Top Three Diving Sites: The Great Barrier Reef, Australia

My Navy travels have afforded me the privilege of diving in some of the most interesting places. In this, and the next couple of posts, I list my top three diving destinations.

I’ve been diving on the Australia’s Great Barrier Reef on two occasions, both times departing for the reef from Cairns, pronounced like the first syllable in “Kansas”. The first trip was to the inner reef, a short boat ride away from the docks. That experience was OK, but not what I had expected. It seemed like the reef had been abused by massive diver and snorkler populations which had not treated the reef with the respect it deserved.

On my second trip to Australia on Navy diving  business, I traveled with the Commanding Officer of the Navy Experimental Diving Unit, CDR (later CAPT)  Jim Wilkins.

Two NEDU Divers - Jim Wilkins and John Clarke (the short one)

From Cairnes we took a fast boat to a liveabord vessel anchored on the outer reef. It was a beautiful 140 ft. tall schooner, SV Atlantic Clipper. And that made all the difference.

During the diving season the Clipper is stationed on the outer reef, and shuttles divers to four diving locations; Norman Reef, Saxon Reef, Hastings Reef, and Michaela’s Reef. Each location featured different underwater vistas, showing an overwealming diversity of colorful reef animals. On a typical day we’d make three daylight dives of varying depths plus a night dive.

SV Atlantic Clipper

After one memorable night dive we walked up the long gangway to the deck, shed, cleaned and stowed our dive gear, and then, attracted by commotion at the bow, found a cluster of divers feeding large fish while six or more Bronze Whaler sharks circled amongst the fish, which seemingly paid the sharks no mind at all. The fish knew where the sharks were at all times, and only the healthiest, quickest fish dared feed in such proximity to the large predator. The agile fish apparently felt confident they could dodge the far more cumbersome sharks, because while we watched, not a sinlge fish was taken.

I, on the other, was not quite so agile. And I admit that it bothered me a bit that while I had been swimming through the dark to a dive ladder on the port side of the vessel, near the stern, Bronze Whalers were circling alongside the port bow. But the ship’s crew assured me that the Bronze Whalers were “not particularly dangerous.”  They had attacked spearfisherman and “bathers”, but the attacks had not been fatal.

Well, that’s comforting, I thought.

I have to say the most memorable series of dives were with the magnificent Green sea turtles. To observe such beautiful and docile creatures in their native environment was probably the highlight of the entire trip.

 During one of the many dives I learned a valuable lesson about diving with diveboat gear. Through the years I’d been diving, since 1964, the equipment was either my own, or belonged to the Navy, and was always maintained in like-new condition. It may have looked battered, but mechanically it was pristine.
As Jim Wilkins and I descended through 60 feet on one dive, I noticed my regulator was becoming increasingly difficult to breathe. I checked my bottle pressure, and there was plenty of air – the dive was just starting. But whether I understood it or not, it was becoming harder and harder to breathe – by the second. I finally took action by grabbing my dive-buddy’s octopus regulator (a back-up regulator), and together we slowly ascended to the surface.
Back on the boat I discovered my tank valve was not fully turned on. Why not, I wondered?
Well, the valve was worn, and generated a considerable resistance before it was fully open. As I am accustomed, I had turned the valve until I met resistance and stopped. That is a good way to prevent damaging a well working valve, but that particular tank valve was not working as smoothly as it should. It fooled me.
Chalk one up to lessons learned.
Without a doubt, the series of dive made from the Atlantic Clipper were among the most memorable of my diving career. In upcoming posts I’ll describe Red Sea dives at Sharm El Sheik and Ras Mohammad, followed by a dive at Herod’s Port, in old Caesarea, Israel.

Diving Under Antarctic Ice

You are 100 feet down using scuba, with your dive light spotlighting the most exotic looking Sea Hare you’ve ever seen.

It’s noon at McMurdo Station, Antarctica but it’s dark at your depth because between you and the surface of the Ross Sea lies19 feet of snow-covered ice.  Your dive buddy has drifted about 100 feet away, but you can see him without hindrance in the gin clear water of the early Antarctic springtime.

The 800 foot water visibility also means you can easily see the strobe light hanging on the down line 200 feet away, the line leading to the three and a half foot diameter hole bored through the ice.

Under these conditions, you should not have to worry about your regulator, but you do, because you know that any scuba regulator can fail in 28° F water, given enough opportunity. You also know that some regulators tolerate these polar conditions better than others, and you are using untested regulators, so yours might free-flow massively at any moment.

Should that happen, you have a back-up plan; you will shut off the free flow of air from your failed regulator with an isolation valve, remove the failed second stage from your numb and stiff lips and switch to a separate first and second stage regulator on your bottle’s Y-shaped slingshot manifold, after first reaching back and opening the manifold valve. Of course, that backup regulator could also free-flow as soon as you start breathing on it – as has already happened to one of your fellow test divers.

In that situation you would have no choice except to continue breathing from what feels like a torrent of liquid nitrogen, teeth aching from the frigid air chilled to almost intolerable temperatures by unbridled adiabatic expansion, until you reach your dive buddy and convince him that you need to borrow his backup regulator. Once he understands the gravity of the situation, that two of your regulators have failed, then the two of you would buddy-breathe from his single 95 cu ft bottle as you head slowly towards the strobe marking the ascent line. And of course he will be praying that his own primary regulator doesn’t fail during that transit.

Once you reach the ascent line you are still not out of difficulty. The two of you cannot surface together through the narrow 19-foot long borehole. So you would remove your regulator once again and start breathing off a pony bottle secured to the down line. Once it is released from the line, you can then make your ascent to the surface; but only if a 1300-pound Weddell seal has not appropriated the hole. In a contest for air, the seal is far more desperate following an 80 minute breath-hold dive, and certainly much more massive than you. Weddells are like icebergs – their cute small face sits atop a massive body that is a daunting obstacle for any diver. 

But you even have a plan for that — you’ve heard that Weddell seals don’t like bubbles, and they get skittish about having their fins tugged on, and will thus relinquish the hole to you. … At least, that’s what you’ve been told. You certainly hope he would leave before you consume the meager amount of air in your pony bottle.

The text above was taken from a U.S. Navy Faceplate article I wrote concerning  a 2009 Smithsonian Institution sponsored diving expedition to Antarctica in which I participated. On and under-the-ice photos were taken by expedition members Drs. Martin Sayer and Sergio Angelini.