Cosmic Coincidence

Almost exactly a year ago, I began writing one of my third novel’s introductory chapters. I am sharing a sample of that chapter at this time because of what seems to me to be a recently discovered coincidence.


“There is never an end to a thing once it is started, according to astrophysicist Peter Green. We can call it an end, but that doesn’t make it so.

A person can be born, grow old and die, but his or her energy goes on, somehow. It may not be recognizable, but physics says it must be that way.
Even a universe is born, grows for a seeming eternity, yet eventually it too must die. Some say in its end, there is a new beginning.

Dr. Peter Green knew those facts better than most. As an astrophysicist working with colossal machines of physics research at CERN, Switzerland, machines that have the power to peer into the beginning of the universe, he’d often thought about not just the beginning, but the ending, the ending that precedes what comes next.

His specialty was dark matter, and something perhaps related, dark energy. We can’t see either, but physics says they must exist for the universe to be what it is.

Either that, or physics is wrong, and neither Green nor his scientist colleagues had ever found physics to be in error.

But he did wonder, if a universe dies, does it leave behind a ghost, unseen but somehow there, with mass that exists at grand scales, but nonexistent at human scales?

And if so, must not the nature of our universe, the shape of our galaxies, depend on an ever-growing graveyard of dead stars, galaxies — and people?

Where does it end? Well, it doesn’t, not really. At least that’s how Dr. Peter Green saw it.”


Arguably, that’s a pretty unconventional thought, Dr. Green had, even for cosmologists who, as a whole, are renowned for unconventional thinking. And at the time that I wrote it, I thought it was a good way to illustrate that the character Peter Green was brilliant, but a bit odd.

Well, he is odd no longer.

I say that because just today I saw a LiveScience article, from which I quote:

“Physicists have found what could be evidence of ‘ghost’ black holes from a universe that existed before our own.

The remarkable claim centers around the detection of traces of long-dead black holes in the cosmic microwave background radiation – a remnant of the birth of our universe.

According to a group of high-profile theoretical physicists including Oxford’s Roger Penrose (Ph.D. in mathematical physics), these traces represent evidence of a cyclical universe – one in which the universe has no inherent end or beginning but is formed, expands, dies, then repeats over and over for all eternity.

2011
Roger Penrose

“If the universe goes on and on and the black holes gobble up everything, at a certain point, we’re only going to have black holes,” Penrose told Live Science. “Then what’s going to happen is that these black holes will gradually, gradually shrink.”

 When the black holes finally disintegrate, they will leave behind a universe filled with massless photons and gravitons which do not experience time and space.

 Some physicists believe that this empty, post-black hole universe will resemble the ultra-compressed universe that preceded the Big Bang – thus the entire cycle will begin anew.

 If the cyclical universe theory is true, it means that the universe may have already existed a potentially infinite number of times and will continue to cycle around and around forever.

Penrose is clearly one of the great minds of the world, as you can perhaps appreciate from this YouTube clip.

As a reminder, this is also what the fictional cosmologist in the upcoming novel, Dioscuri, believed.

“He did wonder, if a universe dies, does it leave behind a ghost, unseen but somehow there, with mass that exists at grand scales, but nonexistent at human scales? And if so, must not the nature of our universe, the shape of our galaxies, depend on an ever-growing graveyard of dead stars, galaxies — and people?

Where does it end? Well, it doesn’t, not really.” 

Pretty interesting coincidence, don’t you think?

Read the LiveScience article here.