The Basic Chemistry of Nitrogen Dioxide

“The U.S. President was on the phone with the President of China when a video from the International Space Station came in from the NASA feed to the Emergency Operations Center. A huge burnt-orange cloud was covering the entire southern Pacific, extending all the way up to Hawaii and down to New Zealand. This was no ordinary nuclear explosion.”

The recent deadly explosion in Beirut, and the science fiction thriller, Atmosphere, book 3 of the Jason Parker Trilogy, both involve a toxic, brownish-orange gas, nitrogen dioxide. Of course, one involvement is fictional, and the other, sadly, is not.

From the first chapter of Atmosphere, we find a description of the effects of a gamma ray burst hitting the Earth. “Rampaging winds began spreading toxic nitrogen dioxide clouds around the planet, and within days, the earth was fully affected.”

Considering the violence with which nitrogen dioxide is associated, the way it is created is relatively simple. Some chemists will no doubt claim that the following discussion is too simplistic, but I’ll let them fill in the blanks, if they so choose. As advertised, this is just the basics.

Given enough energy, and localized temperatures on the order of 3000°C, nitrogen molecules (two atoms of nitrogen, N2) combine with oxygen molecules (two atoms of oxygen, O2) to form a chemically unstable gas, nitric oxide, NO.

In chemical terms, N2 + O2 → 2NO

If the searing NO gas is cooled rapidly in the presence of oxygen molecules, the toxic, brownish-orange gas, nitrogen dioxide, is formed.

2NO + O2 → 2NO2.  (This is really nasty stuff!)

It’s been known since at least 1911 that the temperature of an electrical arc (6000° – 8000°C) is enough to cause N2 and O2 to form NO. If the hot gaseous NO is then rapidly cooled, NO2 results.

In the science fiction novel, NO2 was created high in the atmosphere by a cosmic burst of high energy gamma rays (GRB) colliding with nitrogen molecules in the presence of oxygen. Lightning also creates nitrogen dioxide, although in relatively small quantities. But if you increase the energy and the quantity of nitrogen and oxygen, “a huge burnt-orange cloud” would be formed.  

According to current estimates, that is exactly what happened in Beirut.

Apparently, an industrial fire caused the thermal decomposition of large quantities of ammonium nitrate, which energetically broke down to form massive quantities of nitrogen gas, oxygen and water.

2NH4NO3 → 2N2 + 4H2O + O2.

The resulting high temperature N2 and O2 instantly combined to form the toxic burnt orange cloud of nitrogen dioxide, as seen in the above photo.

The exact mechanism of NO2 formation likely differs among the progenitor sources (GRB, lightning, explosion), but the basics should be the same.

What happened to the poisonous cloud of NO2 after it formed? Unlike what would happen in the upper atmosphere during a GRB, near the surface there is enough moisture for the NO2 to quickly combine with water to form nitric acid.

3 NO2 + H2O → 2 HNO3 + NO

Nitric acid rain would not be pleasant, but would not be as bad as nitrogen dioxide.

So, imagine if you will, a cosmic event (a GRB) far more violent than any man-made explosion. Imagine the entire atmosphere turning into a cloud like that in the photo above. Arguably, that is what would happen after a devastating GRB from within our galaxy.

Actually, that toxic nitrogen dioxide cloud would be the least of the planet’s troubles. It would be a very bad day on Earth.

The good news is that such an event would be very unlikely.

But then again, this is 2020.

Cosmic Coincidence

Almost exactly a year ago, I began writing one of my third novel’s introductory chapters. I am sharing a sample of that chapter at this time because of what seems to me to be a recently discovered coincidence.


“There is never an end to a thing once it is started, according to astrophysicist Peter Green. We can call it an end, but that doesn’t make it so.

A person can be born, grow old and die, but his or her energy goes on, somehow. It may not be recognizable, but physics says it must be that way.
Even a universe is born, grows for a seeming eternity, yet eventually it too must die. Some say in its end, there is a new beginning.

Dr. Peter Green knew those facts better than most. As an astrophysicist working with colossal machines of physics research at CERN, Switzerland, machines that have the power to peer into the beginning of the universe, he’d often thought about not just the beginning, but the ending, the ending that precedes what comes next.

His specialty was dark matter, and something perhaps related, dark energy. We can’t see either, but physics says they must exist for the universe to be what it is.

Either that, or physics is wrong, and neither Green nor his scientist colleagues had ever found physics to be in error.

But he did wonder, if a universe dies, does it leave behind a ghost, unseen but somehow there, with mass that exists at grand scales, but nonexistent at human scales?

And if so, must not the nature of our universe, the shape of our galaxies, depend on an ever-growing graveyard of dead stars, galaxies — and people?

Where does it end? Well, it doesn’t, not really. At least that’s how Dr. Peter Green saw it.”


Arguably, that’s a pretty unconventional thought, Dr. Green had, even for cosmologists who, as a whole, are renowned for unconventional thinking. And at the time that I wrote it, I thought it was a good way to illustrate that the character Peter Green was brilliant, but a bit odd.

Well, he is odd no longer.

I say that because just today I saw a LiveScience article, from which I quote:

“Physicists have found what could be evidence of ‘ghost’ black holes from a universe that existed before our own.

The remarkable claim centers around the detection of traces of long-dead black holes in the cosmic microwave background radiation – a remnant of the birth of our universe.

According to a group of high-profile theoretical physicists including Oxford’s Roger Penrose (Ph.D. in mathematical physics), these traces represent evidence of a cyclical universe – one in which the universe has no inherent end or beginning but is formed, expands, dies, then repeats over and over for all eternity.

2011
Roger Penrose

“If the universe goes on and on and the black holes gobble up everything, at a certain point, we’re only going to have black holes,” Penrose told Live Science. “Then what’s going to happen is that these black holes will gradually, gradually shrink.”

 When the black holes finally disintegrate, they will leave behind a universe filled with massless photons and gravitons which do not experience time and space.

 Some physicists believe that this empty, post-black hole universe will resemble the ultra-compressed universe that preceded the Big Bang – thus the entire cycle will begin anew.

 If the cyclical universe theory is true, it means that the universe may have already existed a potentially infinite number of times and will continue to cycle around and around forever.

Penrose is clearly one of the great minds of the world, as you can perhaps appreciate from this YouTube clip.

As a reminder, this is also what the fictional cosmologist in the upcoming novel, Dioscuri, believed.

“He did wonder, if a universe dies, does it leave behind a ghost, unseen but somehow there, with mass that exists at grand scales, but nonexistent at human scales? And if so, must not the nature of our universe, the shape of our galaxies, depend on an ever-growing graveyard of dead stars, galaxies — and people?

Where does it end? Well, it doesn’t, not really.” 

Pretty interesting coincidence, don’t you think?

Read the LiveScience article here.

 

A Novel – A Song Just Waiting to Bust Out

SAM_0557One of the most memorable quotes I’ve heard from a child came from his experience listening to classical music. I don’t remember who said it (Google comes up empty-handed), but I’ve never forgotten it.

“A symphony is music with a song waiting to bust out any minute.”

Those words were the child’s response to listening to a symphonic piece. The little listener kept expecting to hear a song, but no sooner did the musicians seem to be closing in on a melody, than the music changed and darted off down another musical path. I suspect that was a little frustrating to the kid; but at least it kept him listening, expectantly.

Being a musician, I can fully appreciate the correctness of his innocent comment.

Classical music is technical; in fact, highly so. Orchestration is a wonderment to those of us who aren’t both talented and trained in the art. The printed lines for a solo instrument, like the clarinet I file0001662840435play, are defined by strict mathematical relationships between frequencies of sound. If the math is not precise, then the sound will not be precise and melodic. That is to say, the sound will not be music, but rather noise.

I consider myself a technical person. As a scientist, I understand the technical rigor and precision which is required for composing and orchestration, but also for scientific and engineering calculations and publications. Indeed, I’ve spent decades writing technical papers, many with a fair amount of mathematical basis. I kept the creative, the musical side, bottled up, because it’s not publishable. Technical publications are, well, technical. They are neither pretty nor tuneful.

But as I mingle vicariously with other technical writers, I find that some of them also have a pent-up desire for creative writing. With a somewhat guilty feeling, they have actually penned very good, non-technical prose. And even a few poems.

Now that I, a scientist, have released my first novel, Middle Waters, hugely imaginative compared to my day-to-day paid technical writing, I feel I have birthed a bastard child.

Oh, but how I love that child.

Now let the song begin…