A rip current may have different shapes, but it can always turn deadly.
June of 2023 was a disastrous month along Florida Panhandle Beaches. Having saved money all year for a beach vacation, tourists were dead set on entering dangerous water. They did so despite double red flags warning of unsafe water, police-levied fines (reportedly $500 in Panama City Beach), and lifeguard alerts.
The poster below defines the classic shape of a rip current, as well as methods for escaping that irresistible force of water returning offshore.
A Chance Encounter
Reality may be more complicated than shown in the poster. The aerial photos below, taken by my copilot wife in 2017, show an alternative shape of a rip current. Sediment stirred up in the surf zone stained the flow, revealing its form distorted by the down beach, longshore current. That sediment also exposed three rip currents along a three-mile section of the sandy beach.
The aerial photos validate the swimmer escape plan shown in the above poster. It also confirms that once you turn shoreward, you may reenter the rip current if you stray too close to the drained portion of the beach.
Paradoxically, if the current loops back as it does in these photos, and if you have flotation, the current might eventually carry you toward shore. Of course, if you drift too far down the beach, you might encounter yet another rip current.
From the Experts
The University of California San Diego Sea Grant Program answered a myth about rip currents in the following web article based on insights from Dr. Dalrymple, an Emeritus Professor at Johns Hopkins University and currently a Distinguished Professor at Northwestern University. I quote from that Sea Grant article.
Myth: If you get caught in a powerful rip, you can be swept out to sea forever.
Answer: Even under the worst conditions, you won’t be swept to the middle of the ocean, though it could be a long swim back to shore.
Most rip currents are part of a closed circuit, says Robert Anthony Dalrymple, a coastal engineer and rip current scientist at Johns Hopkins University. If you ride a rip current long enough – float along with it – you will usually be taken back to shore by a diffuse, weaker return flow.
The exception to this occurs during fierce storms, when pounding surf sets up powerful longshore currents that shed turbulent eddies. The seaward-flowing arms of these swirling currents may look and feel like “rips,” but they are not part of a circulation cell that will slowly carry you toward shore. Instead you’ll be deposited outside of the surf-zone, sometimes a distance of multiple widths of it. When the surf is big, most people should stay out of the water.
Interpretation
From Dalrymple’s comments, it seems that the above photos show longshore currents distorting the rip current circulation. If you were lucky enough to be able to float with those currents until they dissipate, you would indeed be left far from the surf zone.
Application
As Dalrymple said, when the surf is big, most people should stay out of the water. But frankly, based on recent beach history, that is a gross understatement. Most emphatically, STAY OUT OF THE WATER when double red flags are flying. Those flags mean the beach is formally and legally closed.
The first impression from the Fire Chief was that my childhood home had been firebombed.
The Event
As my Father headed home one afternoon in 1958, he had left behind the hectic traffic of Kansas City, Kansas. He was approaching the bedroom community of Prairie Village, Kansas, when he had to stop as a procession of fire trucks, sirens wailing, pulled into the road ahead of him.
Once traffic was moving again, he remained behind the fire engines. They happened to be headed his way. A few minutes later, the speeding trucks made a quick turn to the right as they entered a community of neatly shuttered Cape Cod homes less than ten years old. Coincidentally, that was where he needed to turn.
The vehicles slowed only slightly as they entered quiet residential streets. Young children leaving a nearby elementary school stared at the noisy procession. But oddly, the firemen were still heading in the same direction my Father needed to go.
He could now see smoke in the air as he approached within a quarter-mile of our home. And then, he shuddered as he watched the trucks turn up our street. Seconds later, he watched the trucks stop in front of our house, the Cape Cod house with a dense gray cloud of smoke billowing from it.
As he parked as close as the fire trucks allowed, he saw far more smoke than flames. Some would think that was a good sign, but he knew from painful experience just how deadly smoke can be.
When he was a teenager, he lost his Father to smoke inhalation in a hotel fire. So now, he was close to panic. His wife, my mother, had been alone in the burning house.
At first, all he could focus on was firemen dragging hoses through the open front door and smoke pouring out the door into the front yard. Then with great relief, he saw Mom standing on the opposite side of the street, surrounded by handfuls of neighbors. She ran towards him, seemingly safe, but of course, shaken.
Fortunately, she had been in a front bedroom when the stove exploded. She managed to escape out the nearby front door.
Aftermath
Something had detained me that day, either my safety patrol duties or the principal. I don’t remember which. As I turned up my street, an excited boy about my age, twelve, announced that I had missed a “cool” fire. But as I walked up the road, I saw that I was about to witness the fire’s aftermath, up close and personal.
The dining room was a mixture of charred furnishings and wet soot dripping down the walls. The glass in a window facing the back of the house had been shattered, leading to the initial assessment that an incendiary device had been tossed into the house.
The adjoining kitchen also had some fire damage, which was strangely limited. A charred path rose up to the ceiling from behind the stove and then angled over to the back door. Reaching the back wall, the path turned downward. One side of a curtain framing the glass in the back door was incinerated, a few blackened strands of cloth left dangling. Only a foot away, the right-side curtain panel was untouched.
A plastic wastebasket sat at the back door just underneath the left curtain panel. Oddly, the half of it closest to the door had been melted into a dark puddle. But the other half of the wastebasket was undamaged. The degree to which the heat had exacted its cautery was almost surgical.
Only two feet away from the strangely cleaved wastebasket was the open door that separated the kitchen from the dining room. Although the dining room was blackened by fire and smoke, the kitchen was largely unaffected, except for that curiously defined path of charred paint.
On top of the stove was a squat cylinder that filtered and stored bacon grease. Although the fire chief was suspicious that the bacon grease container might have been the source of the fire, its contents were untouched.
The grease can was topped by a handle made of black Bakelite plastic, somewhat like the one pictured below.
Strangely, exactly half of that knob was charred, the side facing the back of the stove. However, the side facing the room was untouched. One side of the knob was briefly exposed to intense heat, while the other was not.
Discovery
When the fire investigator pulled the stove away from the wall, they saw that the 220-volt wires had shorted out. He suggested that imperceptible vibrations coming from the ground, or the effect on the house’s wooden framing of sometimes-violent Kansas winds, had caused the two large loops of high amperage copper wire to rub together.
That rubbing slowly chafed through the asbestos insulation separating them. The investigator guessed that the wear was imperceptibly slow until, at last, the power lines arced. Violently.
When 220-volt lines arc to ground, there can be an instantaneous current of several thousand amperes surging through the wires until the screw-in fuses of the era blew, robbing the circuit of power. But the damage had already been done.
In the intervening moment before the loss of power, the arc generated enough heat to cause a plasma of ionized copper atoms and suddenly freed electrons. The copper wires were not just melted; they were vaporized and turned into a chaotic ball of superheated positively charged atomic nuclei and negatively charged electrons.
Enriching the copper plasma was plasma from the air itself, nitrogen, and oxygen. You see, at plasma temperatures of thousands of degrees, electrons are ripped off molecules. Vaporized insulation would also have joined the ball of plasma.
The 4th State of Matter
Plasma is said to be the fourth state of matter (solid, liquid, gas, plasma). Arguably, it’s the most common state of matter in the universe. You can buy your own “plasma ball” as an object of curiosity for your home, like in the photo below. However, an unconstrained ball of plasma is altogether different. It’s not a good thing to have running loose inside your home.
Due to its incredibly high heat, plasma becomes buoyant, rising in the air. As the fire investigator noted, the approximately 8-inch-wide path of charred paint in our kitchen made it easy to follow the plasma’s path as it rose up the wall behind the stove.
Upon reaching the ceiling, the upward momentum of the seething ionic mass was diverted across the kitchen ceiling, angling towards the back door. Like a billiard ball ricocheting off the edge of a pool table, the sun-like ball then careened downward, incinerating the left-most curtain on the door and consuming half of the plastic wastebasket lying directly below.
Upon encountering the tile floor, the ball’s momentum carried it at a right angle through the open door and into the dining room.
Once there, the plasma ball exploded.
The entire house would have burned down were it not for the fast response of the firefighters. If the house had been fully involved in the fire, the charred trail in the kitchen would have been destroyed. That trace is what provided evidence of the passage of a buoyant ball of sun-hot plasma.
The next two frames from the video involved crossing wires attached to 110-volt wiring and a circuit breaker.
A high-speed camera was used to capture the time course of plasma generated by short-circuiting the copper wires. Shown below, the initial vaporization of the short-circuited copper wires produced the greenish-blue coloration expected for copper plasma. The contacts in the circuit breaker (inside the white circle on the lower left of the image) had not yet separated.
In the next frame, within a few milliseconds of plasma initiation, the circuit breaker contacts had opened, and the plasma started interacting with the surrounding air, creating a yellowish-white light. With the circuit broken, the current source had been removed. However, the plasma continued to grow, changing color as air and other things became ionized due to the extreme but highly localized heat.
Because of the relatively low 110-volts, the resulting plasmas were slight in comparison to the amount of thermal, electrical, and magnetic energy that must have been created in our stove’s 220-volt short-circuit. So, imagine an instantaneous current of several thousand amperes creating a ball of plasma almost a foot wide, shooting with a large bang out of the back of the stove.
Event Illustration
In the following sequence of illustrations depicting the kitchen and dining room of the house, the path of the plasma ball is marked by a trail of soot.
The damage in the kitchen was limited to a small fraction of the room. Once the ball of plasma rolled along the floor into the dining room, fiery chaos ensued.
The Enigma
Plasmas caused by either electrical shorts or other energy sources such as microwave ovens can generate temperatures over 6000 K. However, typically those hot plasmas disappear rapidly once power has been removed. Such plasmas do not form a ball that travels across a room. Yet, if we were to believe the experienced fire investigator and our own eyes, that is precisely what happened in our house. It was undeniable that the kitchen range had exploded, but the most significant fire damage occurred in an adjoining room. The kitchen was scarcely touched.
Ball Lightning
There is one type of glowing sphere that can travel some distance while maintaining its luminescence and destructive ability. It’s called ball lightning, a mysterious phenomenon that many scientists still doubt exists. However, within the past decade, hard evidence of ball lightning has been revealed by happenstance.
In July of 2012, a fortuitous observation was made by Chinese scientists J. Cen, P. Yuan, and S. Xue. In 2014 they published their findings in a paper titled Observation of the Optical and Spectral Characteristics of Ball Lightning. Their report was published in Physical Review Letters, a premier physics journal published by the American Physical Society.
One of the first descriptions of the above article in the easily accessible lay press was by the science writer Brian Dodson. His introduction of ball lightning is not only informative but relevant to the incident in our home. He is quoted below.
The reported size (of ball lightning) is usually between 1 and 100 cm (0.4-40 in), with the most common size being 10-20 cm. They do not tend to be extremely bright, usually appearing rather like an incandescent lamp in surface brightness. Colors include red, orange, and yellow.
The balls persist for times between about a second and a minute, and tend to move at a few meters per second, often, but not always, horizontally. They seem to be able to pass through closed doors and windows, and even penetrate areas which are usually proofed against lightning. Their final decay is usually rapid, and can range from benign to rather large explosions.
After that introduction, Dodson described what the Chinese scientists had observed.
Physicist Ping Yuan and his team from Northwest Normal University in Gansu Province, China, had positioned spectrographs to investigate lightning on northwest China’s Tibetan Plateau. They recorded both a spectrum and a high-speed video of a ball lightning that appeared following a cloud-to-ground lightning strike which struck about 900 meters (3,000 ft) from their spectrographs.
While the apparent size of the glow on the spectrograph was about five meters (16 ft), the physicists report that the actual size of the ball was “much smaller,” bringing the observation into accord with historic reports. The color of the ball changed from its initial white to a reddish glow during its persistence of just over a second. It was observed to drift horizontally about 10 meters and ascend perhaps 3 meters during its life.
Data
Sand is primarily silicon dioxide, with two oxygen atoms bound to a single silicon atom. According to at least one source, a self-sustaining plasma can form when a high-voltage spark and the heat from copper plasma (from the shorted wires), drives oxygen ions away from the silicon atoms. The plasma ball can somehow be sustained and even grow when oxygen from the air reenters the plasma during the short lifetime of the plasma ball.
The Asbestos Connection
For many years, asbestos was used as insulation on wires due to its strong thermal and electrical insulating properties. Without a doubt, an electric range manufactured in 1950 would have had asbestos-based insulation on the 220-volt wiring. The use of asbestos in stoves was essentially banned in 1977, twenty years after the fire.
The most common and useful form of asbestos, Chrysotile or white asbestos, is a hydrated magnesium silicate with the chemical formula 3MgO·2SiO2·2H2O. From the known atomic ionization energies, we know that if there is enough spark-energy to ionize oxygen, then there is more than enough energy to ionize both magnesium and silicon atoms.
Since J. Cen et al. discovered the spectra of silicon in ball lightning, it is reasonable to assume that both magnesium and silicon were in abundance in our plasma generated from asbestos-insulated copper wiring.
Nexus
The facts of the plasma ball’s track and the eventual explosion were readily apparent to the trained eye of the fire investigator back in 1958. However, it seems that the knowledge of how such a fireball could travel from one room to the next and eventually explode could not have been known until recently. Thus, it has taken most of a human lifetime to perhaps explain the bizarre events of that day.
I am curious about an overly simplistic nexus combining the known features of high-temperature plasmas and ball lightning. We now know that naturally occurring ball lightning generated from ground strikes emits the light spectra of vaporized silica. The most common form of asbestos insulation contains equal parts of silicon and magnesium. I wonder, could vaporized asbestos have been partially responsible for creating a long-lasting but contained ball of plasma—in my house?
Of course, before being taken seriously, this guess about the potential role of asbestos insulation in short-circuited 220-volt wiring really should be tested in a laboratory. While I would love to see a demonstration of that potentially naïve hypothesis, let me state the obvious. This would be an inherently dangerous experiment.
It would have to be conducted under carefully controlled conditions by fire and electrical hazard-wise professionals. It might also be prudent to have firemen and EMTs standing by, just in case.
Smoke inhalation is a rapid and ruthless killer. It is the number one cause of death from fires.
I learned that lesson the hard way. Long before I was born, my Grandfather Clarke died of smoke inhalation during a fire at the Hotel Kilgore in Fordyce, Arkansas.
Wild Fires
You don’t have to be in a burning building to be exposed to large quantities of smoke. During every fire season along the Pacific Coast, vast areas come under threat of predicted hazardous smoke conditions.
The following graphic illustrates the most important factor of wildfire smoke inhalation; the size of the smoke particles. The smallest particles are inhaled deep into the lungs and cause the most lung and circulatory damage.
An Air Quality Index (AQI) and associated warnings are updated online every few hours from an EPA website. The AQI can be found for any geographical location in the U.S. based on data from air monitoring stations.
Cloth masks will not protect you from wildfire smoke.
According to the CDC, cloth masks that are used to slow the spread of COVID-19 by blocking respiratory droplets offer little protection against wildfire smoke. “They do not catch small, harmful particles in smoke that can harm your health.”
The protective capabilities offered by N95 masks are largely attributed to the masks’ certification to remove at least 95% of all particles with an average diameter of 300 nm (0.3 micrometers, or microns).
A smoke particle 2.5 microns in diameter is equal to 2,500 nm. So, in principle, the majority of smoke particles should be excluded by the 300 nm wide pores of a non-leaking N95 mask.
But the secret to success is in eliminating leaks. Inexpensive N95 masks are rarely properly worn, removing leaks around the mask. The N95 mask below, however, is specifically designed to prevent leaks on inhalation. It uses a gel seal around the face.
This particular mask has an exhalation port, thus easing exhalation breathing resistance, as do many N95 masks for the construction industry. Obviously, medical workers won’t allow patients to wear them because the patient exhales their viruses into the clinician’s face.
However, for those trying to preserve their lungs during a high smoke alert like those shown here, the masks should be ideal, though pricey.
The white filter inserts are disposable and are meant to be replaced on a regular basis once they are soiled by foreign particles.
[This writer has no tie to the manufacturer of the above masks. I was given one by a company CEO when I was working for them during the beginning of the COVID crisis. I liked it so much, I bought one for my wife.]
Above is the EPA AQI graphic for Panama City, Florida in September 2020. All of the following graphics were obtained contemporaneously from government websites. (I delayed publishing this post until the science article referenced at the bottom was published.)
Western Air Quality in September 2020
September 2020 was a really bad month for breathing out west, due to a multitude of wilderness wildfires. For instance, in Portland, Oregon on the morning of September 12, the AQI was near the top of the very unhealthy range.
At the same time, the AQI was near the top of the Hazardous range in Eugene, Oregon.
As seen from the data from a permanent monitor in Eugene, the air quality went from good to bad very abruptly as the smoke from forest fires spread.
The Santium Fire
As forwarned by images like that taken on September 8, 2020, Salem, Oregon was soon to come into harm’s way. The smoke from the large Santium fire had reddened the sky.
Four days later on the 12th, the AQI in Salem was literally “Beyond” bad.
The EPA warmed Everyone to stay indoors and reduce activity levels.
Visual Comparison
On August 29, 2020, the web camera onboard the R/V Oceanus based in Newport, Oregon, recorded the following image facing forward over the ship’s bow.
By noon, September 12, the AQI had increased dramatically. The AQI was 280, very unhealthy.
Visibility was nil; not from fog, but from wildfire smoke.
The researchers expressed smoke concentration in scientific terms, micrograms of smoke particles for each cubic meter of air. To convert that concentration into EPA terms, AQI, we can use the table below, the 2012 update to the EPA’s Air Quality Index standards. It translates the conversion from AQI (second column from the left) to the concentration of woodsmoke for a 24-hour average, on the far right.
The above University of Montana researchers exposed young, active volunteers to 250 micrograms of smoke particles per cubic meter of air. If that exposure had lasted for 24-hours, it would have been at the border of the EPA’s Very Unhealthy and Hazardous AQI. But for a 45-minute exposure, no discernable physiological effects were noted.
Conclusions
Although exposure to heavy smoke and toxic vapors from fires can be immediately lethal, such exposures are relatively rare. On the other hand, multitudes of people can be exposed to woodsmoke during a particularly bad fire season, like that on the west coast from time to time.
The important takeaway from the above research is that when needed to escape from a fire area, short exposures to even Hazardous levels of woodsmoke can be tolerated. However, the emphasis is on short timeframes.
For longer exposures, tightly fitting masks like that pictured above will provide the best respiratory protection.
I thought the jig was up when I heard the top U.S. Intelligence Agency was releasing what it knew about UFOs. (See link at the bottom of this post.)
Who would want to read a science fiction novel about UFOs and aliens when the truth is—as they say—stranger than fiction?
What would happen to all those imagined UFOs that slice through water as easily as air? What about spaceships that are massive quantum computers that sense, think and plot the safest course through a universe littered with obstacles both large and small?
What about ships powered by the free energy of the cosmos, steered by the photonic vibrations of colored lights modulating the propulsive energy at the core of the cosmic vacuum?
What would be the fun in imagining aquatic species able to tolerate high pressures but unable to survive the toxic oxygen in our atmosphere? Where would the mystery go once we knew the truth?
What could inspire awe in reading about humans working with strange creatures who teach us to genetically engineer a new breed of humans to survive coming cosmic cataclysms?
What is the use in imagining, once you know the truth?
Well, as we now know, science fiction writers needn’t worry. Yes, the U.S. military finally admitted that UFOs exist, which is a vast improvement in government transparency. And, let’s admit it, the reality of UFOs has been one of the worst kept secrets of all time. The darn things keep showing up at the strangest times, sometimes far away, but sometimes incredibly close.
The luckiest humans, those who win the UFO reveal lottery with a closeup view of the craft, have their lives changed forever. This I know. And the number of such human observers are legion.
For reasons known only to the government, their admission of UFOs is not accompanied by the sort of detail for which most UFO aficionados were hoping. But frankly, that is likely a deliberate ploy for reasons of national security. I truly believe, and fully support, the continued need for secrecy.
And because of that secrecy, science fiction writers are still free to imagine what they will. After all, fantasy might be the best way to sow awareness of things we cannot imagine, outside of fiction.
But there are some things that science fiction writers like myself find hard to comprehend. The questions I pose here are ones that in my opinion are of much greater importance than the reality of UFOs, or even ETs from distant star systems.
Frequently, nonscientists attempt to explain the weird nature of some UFO sightings by supposing the craft appear from some bubble of an extradimensional universe. The craft and their supposed inhabitants are perhaps not from a portion of our universe far, far away, but rather they are in fact—right here. Right here as in right next door in a higher dimensional universe, or multiverse!
I repeat, I have heard such things from nonscientists. So, what do scientists think?
With few exceptions, they ignore it. Even the multiverse-believing cosmologists don’t yet have the tools to detect unseen universes. Not seeing is not believing, although to be fair, they may spend a lot of time thinking about it.
I would agree that much of the popular writings on the subject of unreachable dimensions are pseudoscience, or less politely, poppycock. Except for the fact that Einstein once said, “It is entirely possible that behind the perception of our senses, worlds are hidden of which we are unaware.”
So, as a scientist and writer, I hold fast to the fact that long after we know that three-dimensional spacecraft and their alien crews exist, we still will not understand higher dimensional universes. Are there hidden worlds there, as wondered by Einstein, populated with sentient beings?
I wish I knew for sure. I would dearly love to possess a higher dimensional container, a sort of a stripped-down, dumb version of Dr. Who’s Tardis. That way I could discard accumulated junk and never see it again. And I’d never get charged disposal fees.
Free energy would be life changing, but free junk disposal would be the icing on the cake.
Top image: A scene from Atmosphere, book 3 of the Jason Parker Trilogy. (Copyright, 2020, 2021)
Here’s the link to the Preliminary Assessment from the Office of the Director of National Intelligence. (For Jason Parker readers, that’s the same office that fictionally hired Laura Smith to be their Subject Matter Expert on ET Affairs.)
A dead forest bleeds for years, its decomposition products flowing slowly into the soil, leached out by rains to turn tributaries as black as night. Those dark tributaries join forces, darkening streams heading inexorably to the sea. At last, the blood of the forest flows out into the surf zones, spreading a dark brown stain hundreds of yards wide, carried down shore by persistent currents.
I had been thinking about this topic for a couple of years, but was motivated to finally publish it after seeing a recent (February 10, 2021) article in Hakai Magazine, an ePub devoted to coastal environmental subjects. The title was “The Environmental Threat You’ve Never Heard Of.” The lead sentence is, “It’s called Coastal Darkening, and scientists are just beginning to explore.
To quote from that article, “Coastal waters around the world are steadily growing darker. This darkening—a change in the color and clarity of the water—has the potential to cause huge problems for the ocean and its inhabitants.
“Some of the causes behind ocean darkening are well understood… During heavy rains, for instance, organic matter—primarily from decaying plants and loose soil—can enter the ocean as a brown, light-blocking slurry. This process is well documented in rivers and lakes, but has largely been overlooked in coastal areas.”
In the coastal city of Panama City, Florida, entire patches of cypress forests were destroyed a few years ago, thus producing lots of decaying plant matter.
What can destroy a forest? The unstoppable force of a category 5 hurricane. In this instance, it was Hurricane Michael striking Panama City and the surrounding Florida Panhandle on October 10, 2018.
Ironically, although I had retired just days before, I attended an Office of Naval Research Workshop on diving, and had bragged to one of the attendees that Panama City was in a very lucky geographical location. We had not been hit by a hurricane since Hurricane Opal in 1995. And that was only a Category 4 hurricane.
Only a few days later, Panama City’s luck changed, horribly. Category 5 Hurricane Michael made a bee-line for Panama City, pushing a wave of water that swept away much of the community of Mexico Beach, just twelve miles east of the first landfall of Michael’s eye at Tyndall Air Force Base in Panama City.
The above radar imagery was captured on my iPad, using Foreflight aviation software while we safely sat in a hotel room in Birmingham, AL. The redder the color, the stronger the rainfall. Green represented low rainfall intensity near the eyewall.
After returning from our hurricane safe haven in Birmingham, AL to our damaged home on Panama City Beach, and as soon as the airspace opened up again, I surveyed some of the damage from the air. A month after the storm, areas along the Gulf Coast were closed to normal aircraft due to drones surveying the damage along Mexico Beach, and providing assistance to personnel looking for human remains.
However, there were no restrictions to flying along the path of the hurricane, northeast of Panama City. So, on November 4th I launched in that direction and discovered that a huge swath of cypress trees had been flattened about 40 miles north of Mexico Beach. Since cypress trees love water, there were of course creeks running through the midst of them. The Florida Panhandle watershed runs inexorably south towards the Gulf of Mexico (GOM).
Fourmile Creek ran through the area I photographed. It is a tributary feeding the Chipola River. The Chipola in turn dumps into the Apalachicola River, the primary flow into Apalachicola Bay, home of the famous Apalachicola oysters.
A year or so later, as seen on Google Earth imagery of the affected area in Florida, some of the low-lying greenery began to return to the Fourmile Creek area. However, the skeletal remains of the flattened Cypress forest were still clearly evident.
My next flight was on December 18, 2018, after the coastal airspace had been opened back up to general aviation traffic. That was over two months after the hurricane hit shore.
On Sept 2, 2020, almost two years after the hurricane, I was flying from east to west along the coast, back towards Panama City. As I approached Mexico Beach, I saw a clearly defined dark area in the otherwise clear sea water. I snapped several photos as I got closer to the still struggling town. They are shown in sequence below, starting from furthest west, approaching town center.
The largest area of devastation of cypress forests surrounded Fourmile Creek which runs southeast before emptying into the Chipola River.
Due east of Panama City, the appropriately named Cypress Creek also empties into the Chipola River as the river feeds the Dead Lakes. In turn, the Chipola empties into the Apalachicola River southeast of Wewahitchka.
Nearer to Mexico Beach, there is yet another Cypress Creek which drains into both the Intracoastal Waterway at its northern end, and the GOM at its southern end. In the next aerial photo of Mexico Beach, Cypress Creek can be seen pouring its darkness into the ocean. Cypress Creek also drains a large swampy area of destroyed cypress trees.
Remarkably, the greatest dark water offender on the September 2020 flyover was Salt Creek, with its outfall that lay two miles to the northwest of Cypress Creek.
Historical Perspective
Cypress trees have been in Florida for at least 6,500 years. During that time, their populations must have weathered tens of thousands of hurricanes. In spite of being knocked down due to being rooted in wet, soggy soil, and frequently rotting as a result, the overall population is well adapted to black water. Their blood, or rot if you will, produces more of the black water habitat that the cypress trees favor. Throughout the southeastern United States, Cypress forests (with isolated communities often called “domes”) remain ideal habitat for many species of fish, birds and mammals.
Tourists flock to the Gulf Coast’s so-called “Miracle Strip” of clean water and white sand that stretches from Pensacola Beach to Mexico Beach and slightly beyond. On a macro scale, the water and beaches are kept clear by the effects of the Loop Current, and its eddies, bringing clear Gulf water up towards the Gulf shores.
While the dark water periodically spilling into the normally clear Gulf of Mexico beaches may be repulsive to tourists, an experimental study described in the Haikai article notes that black water outfalls may favor certain zooplankton, providing a new food species for local fishes.
So, to this scientist at least, it may that in the Gulf of Mexico, periodic outpourings of dark water caused by heavy rains, tropical storms and hurricanes may be what is required to balance the estuary and marine ecosystem.
In other words, the concerns stated in the Haikai article may not apply to the west coast of Florida. Of course, to know for sure, further study is required.
In retrospect, when looking down upon flattened forests of trees, it seems nature is harsh. But nature works for the end game; survival of the environment. In Florida, the environment has survived hurricanes, and their effects on forests and water, for millennia.
Of greater concern to Florida might be the permanent destruction of the cypress forests by man, rather than hurricanes. Nature can recover from hurricanes, but cannot recover from man’s misguided intentions. After all, forests buffer the effects of hurricanes. Without them, Florida would lay flat and naked before every onslaught of a sometimes violent Nature.
“Nianqua” means “many springs” in the Osage language. It’s those little springs that make canoeing down the Little Nianqua river a favorite pastime for adventurers. The Little Nianqua is a tributary of the Nianqua River which empties into the Mississisppi.
In between freshman and sophomore year in college (September of 1966), a high school friend from the Presbyterian Church near our home in Kansas City, KS, suggested we take a canoe trip in the Ozarks about 150 miles southeast of Kansas City.
The portion of the Little Nianqua normally canoed is about 35 miles, and with time out for climbing the over-looming bluffs, visiting Osage sites and generally goofing around, we would have to spend the night sleeping on a sandbar, propping the canoe over us for protection. It sounded like great fun.
Here was the goofing around part. I made an emergency outrigger out of a barrel and some limbs.
It sort of worked. At least it didn’t sink.
Those bluffs were pretty high, but of course we felt compelled to climb them.
Below is a view of our sandbar encampment from the bluff.
Apparently, Richard was not aware that the spirit of the departed Osage do not like to be disturbed. Otherwise, he would not have perched on an Osage burial mound.
Richard tempting fate.
Spirits Revenge
Shortly after we returned home, Richard and I borrowed my family’s 55 Buick Special and went to a drive in. I was almost 21 years old, so I felt inspired to procure a gallon of Ripple wine. I have no idea what the movie was about, but Ripple actually tasted better than its reputation.
Unfortunately, the spirits of the Osage decided at that moment to seek their revenge. Richard spilled half of the gallon of Ripple, inside the Buick.
Our feeble attempt to soak up the wine and clean the interior was of no avail. No matter what we did, the car stank of cheap wine.
As luck would have it, we both had to head back to college almost immediately. As soon as I was back in Georgia, my parents traded in their one and only car. Somehow, I doubt they got much for it.
I lost touch with Richard Thorn when my parents sold the house in Prairie Village, threw out my child-hood toys (for spite maybe?), hopped into their station wagon with that fresh, new car smell, and headed to a warmer clime, southeast Texas.
Strangely enough, they never said anything to me about that Ripple event. But I guess, compared to my flying off with the keys to the Buick when I flew back to Atlanta the previous January, without enough gas in the car for Dad to make it home, and having poor Dad walk to a gas station, in a snowstorm, well, the Ripple event simply paled in comparison.
However, that “no-keys event”, they did tell me about.
I guess the lesson is, respect the spirits of the dead, or you will pay in ways you cannot imagine.
Perhaps you have read about the Osage in my novels. The Osage ancestral lands were located in Missouri around the Ozarks and over to the Mississippi River. Reportedly, French fur traders found the Osage women to be quite attractive. So much so that supposedly, many of the traders married Osage women.
In spite of that intermarriage, when land-hungry settlers moved from Tennessee to Arkansas and Missouri, the government relocated the Osage to Oklahoma, right next to the relocated Cherokees. In fact, to this day, Pawhuska, Oklahoma, a town I’ve visited and written about, is the current home of the Osage Nation.
About the only Osage thing the white man did not replace, was the name of their river in Missouri, the Nianqua.
In summary, if you’re so inclined, have fun canoeing the Little Niangua. But do be careful where you tread.
“The U.S. President was on the phone with the President of China when a video from the International Space Station came in from the NASA feed to the Emergency Operations Center. A huge burnt-orange cloud was covering the entire southern Pacific, extending all the way up to Hawaii and down to New Zealand. This was no ordinary nuclear explosion.”
The recent deadly explosion in Beirut, and the science fiction thriller, Atmosphere, book 3 of the Jason Parker Trilogy, both involve a toxic, brownish-orange gas, nitrogen dioxide. Of course, one involvement is fictional, and the other, sadly, is not.
From the first chapter of Atmosphere, we find a description of the effects of a gamma ray burst hitting the Earth. “Rampaging winds began spreading toxic nitrogen dioxide clouds around the planet, and within days, the earth was fully affected.”
Considering the violence with which nitrogen dioxide is associated, the way it is created is relatively simple. Some chemists will no doubt claim that the following discussion is too simplistic, but I’ll let them fill in the blanks, if they so choose. As advertised, this is just the basics.
Given enough energy, and localized temperatures on the order of 3000°C, nitrogen molecules (two atoms of nitrogen, N2) combine with oxygen molecules (two atoms of oxygen, O2) to form a chemically unstable gas, nitric oxide, NO.
In chemical terms, N2 + O2 → 2NO
If the searing NO gas is cooled rapidly in the presence of oxygen molecules, the toxic, brownish-orange gas, nitrogen dioxide, is formed.
It’s been known since at least 1911 that the temperature of an electrical arc (6000° – 8000°C) is enough to cause N2 and O2 to form NO. If the hot gaseous NO is then rapidly cooled, NO2 results.
In the science fiction novel, NO2 was created high in the atmosphere by a cosmic burst of high energy gamma rays (GRB) colliding with nitrogen molecules in the presence of oxygen. Lightning also creates nitrogen dioxide, although in relatively small quantities. But if you increase the energy and the quantity of nitrogen and oxygen, “a huge burnt-orange cloud” would be formed.
Apparently, an industrial fire caused the thermal decomposition of large quantities of ammonium nitrate, which energetically broke down to form massive quantities of nitrogen gas, oxygen and water.
2NH4NO3 → 2N2 + 4H2O + O2.
The resulting high temperature N2 and O2 instantly combined to form the toxic burnt orange cloud of nitrogen dioxide, as seen in the above photo.
The exact mechanism of NO2 formation likely differs among the progenitor sources (GRB, lightning, explosion), but the basics should be the same.
What happened to the poisonous cloud of NO2 after it formed? Unlike what would happen in the upper atmosphere during a GRB, near the surface there is enough moisture for the NO2 to quickly combine with water to form nitric acid.
3 NO2 + H2O → 2 HNO3 + NO
Nitric acid rain would not be pleasant, but would not be as bad as nitrogen dioxide.
So, imagine if you will, a cosmic event (a GRB) far more violent than any man-made explosion. Imagine the entire atmosphere turning into a cloud like that in the photo above. Arguably, that is what would happen after a devastating GRB from within our galaxy.
Actually, that toxic nitrogen dioxide cloud would be the least of the planet’s troubles. It would be a very bad day on Earth.
The good news is that such an event would be very unlikely.
“Happy hypoxia,” or more properly, silent hypoxia, has been one of the most puzzling signs and symptoms of patients presenting to Emergency Rooms with COVID-19. The patient’s arterial oxygen saturation can be in the fifties instead of the normal values in the upper 90s, and yet the patient can be cheerful, fully coherent, and even chatty. Normally, with that low an oxygen concentration in the blood stream, a patient would be in severe respiratory distress.
I experienced silent hypoxia after a visit to Thailand in July of 2018, which makes me wonder: was there a coronavirus lurking in Southeast Asia in 2018 that later mutated to become the killer SARS CoV-2? Did I have SARS CoV-1.5?
Summertime was everything you would expect in Thailand. It was warm and humid, but not uncomfortably so. I had twelve hours ahead of me in the Bangkok Airport waiting for my return flight to Taiwan, then the long leg across the Pacific to Los Angeles. Eventually, I would make my way back to my home in Panama City, Florida, which would also be hot and muggy. No surprises there.
What was a surprise, was that a young lady wandering the airport asked if she could interview me for the Thai Ministry of Tourism. She had official looking IDs, and a load of interview questions. I wasn’t interested, and I was busy, I offered, already tired before the twelve hours of dead time even began.
In truth, I wasn’t that busy, but felt it best not to mingle. I seemed to be the only person not speaking Thai, except for that young lady. Surprisingly, she had no detectable accent and could pass for a Southern California blond.
After a couple of hours, she returned when I could no longer claim to be busy. She had a simple, youthful attractiveness and an unassuming manner. So, tiring of the boredom of waiting, I allowed her to sit beside me while she started running down her list of tourism related questions.
She wanted to know why I came to Thailand. It was to give a talk at a medical and scientific conference on sports medicine. My subject was “Oxygen,” a fact that would soon become ironic. I discovered later that my travel, ostensibly paid for by the Thai Sports Authority, was bankrolled by Beijing. But I didn’t know that at the time.
For 45 minutes the questions continued. They were business-like, the type of questions I would expect from a Tourist Bureau. But one thing caused me concern, her occasional hacky cough. She insisted it was nothing, and I was not alarmed. I thought no more about it as I finally boarded the plane for the first leg of my long journey home.
Eight hours after my arrival in Panama City, I felt ill as I lay in bed, trying to sleep after being exactly twelve hours time-shifted. I felt sicker by the minute. Jet lag doesn’t do that.
By morning, I had suffered chills and sweats, and my physician son insisted I be taken to the closest Emergency Room. As we neared the ER I felt I was going to vomit, and I leaned into a trash can that my wife brought for that purpose.
The next thing I heard was her screaming at me.
I yelled back, completely confused and annoyed. “Why are you yelling at me?”
“I thought you’d died,” she said. “You sighed, threw your back into the seat, and your arms were stiff and shaking.”
Apparently I had passed out from a drop in blood pressure. (I had not yet thought about hypoxemia.)
As I was being monitored in the ER, I felt OK. I conversed with my wife, and was half-joking and half-irritated at my unexpected welcome home event.
After awhile, I began to pay attention to the finger tip pulse-oximeter that was monitoring my arterial oxygen saturation. The reading was slipping lower than I had ever seen before, but neither the nursing staff nor the attending physician seemed the least bit concerned. My wife and I continued to chat. I was not in any discomfort, and ignored the monitors until I caught sight of the updated pulse-ox reading. It had plummeted down to a horrifically low 55%.
I told my wife to alert the nurse. They finally started me on a nasal cannula with oxygen. (For those who know, that was an incredibly delayed reaction.) I also knew enough to realize I should be almost stuporous, yet I wasn’t. I was content, except for my circumstances.
Within a few minutes, an ambulance transported me to a real hospital. Being aware of my overseas travel, they assumed I had a pulmonary embolism, which if detected, would have required immediate surgery. But after a perfusion scan, nothing abnormal was revealed.
After settling into a room, I had zero desire for any of the food they brought me. It was all tasteless, and remained that way for two days.
Initially they kept me on 3 liters of oxygen per minute by nasal cannula, which still wasn’t bringing my oxygen saturation above 84 percent. That was a problem.
At the urging of the CDC, the nursing staff came to my room fully gowned and face-shielded, and stuck that infamously long sampling swab up my nose. They tested me for the most recent viral illness in Southeast Asia at the time, the H7N9 Bird Flu virus of 2017. The results were negative.
In spite of my growing displeasure with being in the hospital, and not tolerating the taste, or lack thereof, of their food, I was happy and chatty with the nursing staff. But neither I, a respiratory physiologist, nor the medical staff could figure out what was wrong. My X-rays showed some consolidation in my lingula, a small lobe in the middle of my lungs, but that was not enough to cause hypoxia of the level I was experiencing.
After a while, I began to get a few signs of pneumonia in my lower lung lobes, but not enough to cause any discomfort, or difficulty breathing. While physicians clobbered the growing infection with antibiotics and steroids, I remained happily hypoxic.
After five days in the hospital, and slowly watching my oxygen saturation rise, a respiratory therapist snuck behind me and turned off the oxygen. My saturation remained low, at 88%, but it didn’t drop further.
That meant, I would remain on air until discharge. That encouraged me enough to call for a walking test, walking down the hospital corridor breathing nothing but air. Unfortunately, I failed that test, and was sent back to bed.
About that time, a pulmonologist came by and told me I had a good bit of atelectasis (collapsed alveoli or lung sacs) in my lower lobes. Finally, something I could fix. I knew what to do.
I wore out my incentive spirometer over the next couple of hours, and then called for another walking test. The Respiratory Therapist chided me…I would just fail again, she said. But I do love a challenge. With her by my side, I moved slowly down the hall, refusing to talk, and that time my oxygen saturation did not drop.
Due to that walking test, I was discharged from the hospital with an oxygen saturation of 92% and returned home to fully recover. (That is in itself an interesting story which I’ll write about next.)
However, the point of this post is that as I read about COVID-19, I’m finding that physicians are puzzled about some of the same bizarre symptoms I experienced in 2018, notably a silent hypoxia. I was never “short of breath” as would be expected with an arterial saturation in the fifties.
From my studies of respiratory physiology, I knew that what had happened to me in 2018 should not have happened, according to the text books. I did not have the SARS virus identified in 2017. But viruses mutate constantly. Could my symptoms have been the signs of a predecessor or cousin to COVID-19? Could it have been an unrecognized COVID-18?
When lungs are not filled with fluid from rampant pneumonia, the most likely way to become hypoxic breathing air is through something called ventilation-perfusion (V-Q) mismatch. A pulmonary embolus can cause massive V-Q mismatch, and can quickly kill if untreated.
However, a recent Science article suggested that COVID-19 might cause microemboli resulting in silent hypoxia. It seems reasonable that enough microemboli, if that’s what it was, could have caused my symptoms in the summer of 2018 without being detected on a pulmonary perfusion scan.
And that worries me for the current pandemic. Summer heat and humidity might not kill this virus. It certainly didn’t kill the virus that I presumably caught from a pretty young girl with a “nothing” of a cough in late July of 2018. It may have been nothing for her, but it was sure something for me.
None of my friends at the medical conference got sick upon returning home. I was the only one spending 45 minutes less than a foot away from that coughing girl. I feel pretty confident where I got it. My only question is, did I pick up a version of coronavirus that was beginning to mutate towards the destructive potential of SARS CoV-2 which erupted just over a year later?
As for the statue at the beginning of this blog post? It is the Yaksha Guardian Giant at the Bangkok Suvarnabhumi airport. If you ask me, he failed completely at protecting me from a tiny little virus. The guardian was awfully big, but sometimes size does not matter.
Heat pumps have been a boon for efficient residential heating and cooling, at least in those regions of the country where winter temperatures do not consistently hover in the frigid range. In the southern United States, whole house heat pumps are arguably the most efficient way to heat and cool a house. Outside temperatures rarely fall below twenty degrees Fahrenheit, and even at 20°F, there is plenty of ambient heat available to heat a well-insulated home.
Owners of heat pumps have probably noticed that in the summer, heat removed from the home is released into the outside air. Heat coming off the outdoor unit, the actual heat pump, is hot. On the other hand, they may not have ventured out on a winter night to see how cold the exhaust from a heat pump is when it is in “heat” mode. But cold it has to be. Compared to a temperature of absolute zero, winter air is hot as hades. A heat pumps works by extracting some of that heat and sending it into the house to warm the house occupants.
But you can’t get something for nothing. Once the pump extracts a portion of the heat from cold outside air, that outside air must become colder.
Into this thermodynamic saga enters a non-native lizard called the Cuban or Brown Anole. The lizards are invasive, which means they are decimating the native Green Anoles which have long existed in the South Eastern United States. The Cubans are larger, more aggressive than the Greens, and reportedly feed on young Green Anoles.
However, they have a weakness. As you might expect for any species originating in Cuba and the Bahamas, they don’t like the cold. Whereas Green anoles range as far north as the Carolinas, the Browns do not. In fact, after a cold night in the Florida Panhandle I found a Brown Anole hard frozen on my doorstep. Perhaps he sensed warmth seeping from under the front door, and was trying to get in the house. Well, he didn’t make it.
The Greens, on the other hand, apparently shelter on or underground in leafy areas to survive the occasional cold dip.
As the outside temperature begins to drop in the late fall and winter, heat-seeking tropical lizards can be found warming themselves on top of the outdoor heat exchanger of our AC unit. When the proverbial nip is in the air, owners of well-insulated Florida homes plagued with high humidity, continue to run their air conditioning until late in the season.
For the Anoles, that is both a boon and a risk; it can prove to be a dangerous warming strategy. If frightened by the sudden appearance of a homeowner, Anoles run. When in their panic they fall into the running fan, the attempted evasion does not end well.
But the greatest insult is a thermodynamic one, which comes when the outside temperature drops even lower. Naturally, that chill makes the warmth from the heat exchanger even more attractive to the lizards. That is, until one of the human occupants decides it’s time to turn on the heat.
Thermodynamics being what it is, that switch almost instantaneously turns a warming source of air from the AC unit into a frigid blast of air.
Which explains why one morning after turning on the heat, I discovered the freeze-dried carcass of a Brown Anole clutching tightly to the grill of the AC unit. Apparently, the already chilled tropical lizard had what little strength it had left suddenly sapped by the high velocity blast of cold air. It died in place. (I have spared you the photo I took at the time.)
There is a moral to this story I believe.
As we grow cozy with new technology we don’t understand, while basking in the warmth and seduction of advanced engineering with its seemingly miraculous capabilities, perhaps we should remember this little lizard. It had acquainted itself with the bright side of thermodynamics, without realizing there was a dark side. Likewise, with the throwing of a switch, seemingly magical technology could be our undoing.
The title of this posting is no hyperbole. The “Chariot of Fear” is the ancient Greek personification of the mythological God Phobos, described by the ancients as horror riding his chariot across the night sky.
In reality, the diminutive moon Phobos, almost skimming the surface of the warrior planet Mars, is a potentially innocuous place to visit assuming you have a pressure suit and oxygen to breathe. Like Earth’s much larger moon, there is no atmosphere on Phobos. There is also no appreciable gravity.
NASA and Japan are planning a joint unmanned mission to the moons of Mars in 2024. The joint venture is called the Martian Moons eXploration Mission, or MMX. Those unmanned missions may be a prelude to later manned landings since NASA has considered landing astronauts on Phobos before landing on Mars, due to the lack of atmosphere and ultra low gravity of that moon.
Using the Hubble telescope, NASA generated a short video of Phobos as it orbits around Mars.
While researching a new novel, I was looking for a view of Mars from Phobos. Using the astronomy software Starry Night Pro 8, I found it.
Further more, I was able to make a 3 minute video of Mars going through an entire rotation, sped up of course some 150 times.
While the above video is aesthetically pleasing because of the background stars and the entirety of Mars being in the field of view (FOV), in reality Mars is too far away in this simulation. As the NASA movie suggests, the surface of Mars is much closer (about 6000 km away from Phobos), and thus in reality Mars fills a quarter of the celestial horizon as seen from Phobos. In other words, from Phobos the FOV of Mars is about 45°, which yields a more accurate view as shown in the following video, also made using Starry Night Pro.
The shadow of Phobos can be seen racing across the surface of Mars, to the left of center of the Martian equator.
From a writer’s perspective, thanks to affordable but sophisticated astronomical simulation software and a bountiful database of space objects and trajectories, both near and far, there is no longer an excuse for science fiction writers not getting their scenes setup correctly, assuming their stories are based on the observable universe.
As for the unobservable universe, well that’s where this thing called imagination comes into play. In an imaginary universe, there’s no fact checking allowed.